{"title":"Pervin空间与Frith框架:双拓扑方面与完成","authors":"Célia Borlido, Anna Laura Suarez","doi":"10.1007/s10485-023-09749-6","DOIUrl":null,"url":null,"abstract":"<div><p>A Pervin space is a set equipped with a bounded sublattice of its powerset, while its pointfree version, called Frith frame, consists of a frame equipped with a generating bounded sublattice. It is known that the dual adjunction between topological spaces and frames extends to a dual adjunction between Pervin spaces and Frith frames, and that the latter may be seen as representatives of certain quasi-uniform structures. As such, they have an underlying bitopological structure and inherit a natural notion of completion. In this paper we start by exploring the bitopological nature of Pervin spaces and of Frith frames, proving some categorical equivalences involving zero-dimensional structures. We then provide a conceptual proof of a duality between the categories of <span>\\(T_0\\)</span> complete Pervin spaces and of complete Frith frames. This enables us to interpret several Stone-type dualities as a restriction of the dual adjunction between Pervin spaces and Frith frames along full subcategory embeddings. Finally, we provide analogues of Banaschewski and Pultr’s characterizations of sober and <span>\\(T_D\\)</span> topological spaces in the setting of Pervin spaces and of Frith frames, highlighting the parallelism between the two notions.\n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09749-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Pervin Spaces and Frith Frames: Bitopological Aspects and Completion\",\"authors\":\"Célia Borlido, Anna Laura Suarez\",\"doi\":\"10.1007/s10485-023-09749-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A Pervin space is a set equipped with a bounded sublattice of its powerset, while its pointfree version, called Frith frame, consists of a frame equipped with a generating bounded sublattice. It is known that the dual adjunction between topological spaces and frames extends to a dual adjunction between Pervin spaces and Frith frames, and that the latter may be seen as representatives of certain quasi-uniform structures. As such, they have an underlying bitopological structure and inherit a natural notion of completion. In this paper we start by exploring the bitopological nature of Pervin spaces and of Frith frames, proving some categorical equivalences involving zero-dimensional structures. We then provide a conceptual proof of a duality between the categories of <span>\\\\(T_0\\\\)</span> complete Pervin spaces and of complete Frith frames. This enables us to interpret several Stone-type dualities as a restriction of the dual adjunction between Pervin spaces and Frith frames along full subcategory embeddings. Finally, we provide analogues of Banaschewski and Pultr’s characterizations of sober and <span>\\\\(T_D\\\\)</span> topological spaces in the setting of Pervin spaces and of Frith frames, highlighting the parallelism between the two notions.\\n</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-023-09749-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-023-09749-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09749-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Pervin Spaces and Frith Frames: Bitopological Aspects and Completion
A Pervin space is a set equipped with a bounded sublattice of its powerset, while its pointfree version, called Frith frame, consists of a frame equipped with a generating bounded sublattice. It is known that the dual adjunction between topological spaces and frames extends to a dual adjunction between Pervin spaces and Frith frames, and that the latter may be seen as representatives of certain quasi-uniform structures. As such, they have an underlying bitopological structure and inherit a natural notion of completion. In this paper we start by exploring the bitopological nature of Pervin spaces and of Frith frames, proving some categorical equivalences involving zero-dimensional structures. We then provide a conceptual proof of a duality between the categories of \(T_0\) complete Pervin spaces and of complete Frith frames. This enables us to interpret several Stone-type dualities as a restriction of the dual adjunction between Pervin spaces and Frith frames along full subcategory embeddings. Finally, we provide analogues of Banaschewski and Pultr’s characterizations of sober and \(T_D\) topological spaces in the setting of Pervin spaces and of Frith frames, highlighting the parallelism between the two notions.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.