{"title":"经典欧拉流体和Korteweg流体的推广","authors":"Kumbakonam Ramamani Rajagopal","doi":"10.21136/AM.2023.0010-23","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this short paper is threefold. First, we develop an implicit generalization of a constitutive relation introduced by Korteweg (1901) that can describe the phenomenon of capillarity. Second, using a sub-class of the constitutive relations (implicit Euler equations), we show that even in that simple situation more than one of the members of the sub-class may be able to describe one or a set of experiments one is interested in describing, and we must determine which amongst these constitutive relations is the best by culling the class by systematically comparing against an increasing set of observations. (The implicit generalization developed in this paper is not a sub-class of the implicit generalization of the Navier-Stokes fluid developed by Rajagopal (2003), (2006) or the generalization due to Průša and Rajagopal (2012), as spatial gradients of the density appear in the constitutive relation developed by Korteweg (1901).) Third, we introduce a challenging set of partial differential equations that would lead to new techniques in both analysis and numerical analysis to study such equations.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A generalization of the classical Euler and Korteweg fluids\",\"authors\":\"Kumbakonam Ramamani Rajagopal\",\"doi\":\"10.21136/AM.2023.0010-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this short paper is threefold. First, we develop an implicit generalization of a constitutive relation introduced by Korteweg (1901) that can describe the phenomenon of capillarity. Second, using a sub-class of the constitutive relations (implicit Euler equations), we show that even in that simple situation more than one of the members of the sub-class may be able to describe one or a set of experiments one is interested in describing, and we must determine which amongst these constitutive relations is the best by culling the class by systematically comparing against an increasing set of observations. (The implicit generalization developed in this paper is not a sub-class of the implicit generalization of the Navier-Stokes fluid developed by Rajagopal (2003), (2006) or the generalization due to Průša and Rajagopal (2012), as spatial gradients of the density appear in the constitutive relation developed by Korteweg (1901).) Third, we introduce a challenging set of partial differential equations that would lead to new techniques in both analysis and numerical analysis to study such equations.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2023.0010-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0010-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A generalization of the classical Euler and Korteweg fluids
The aim of this short paper is threefold. First, we develop an implicit generalization of a constitutive relation introduced by Korteweg (1901) that can describe the phenomenon of capillarity. Second, using a sub-class of the constitutive relations (implicit Euler equations), we show that even in that simple situation more than one of the members of the sub-class may be able to describe one or a set of experiments one is interested in describing, and we must determine which amongst these constitutive relations is the best by culling the class by systematically comparing against an increasing set of observations. (The implicit generalization developed in this paper is not a sub-class of the implicit generalization of the Navier-Stokes fluid developed by Rajagopal (2003), (2006) or the generalization due to Průša and Rajagopal (2012), as spatial gradients of the density appear in the constitutive relation developed by Korteweg (1901).) Third, we introduce a challenging set of partial differential equations that would lead to new techniques in both analysis and numerical analysis to study such equations.