具有半群\(\langle a;b\rangle \)及相关半群的Weierstrass点的唯一性

IF 0.4 4区 数学 Q4 MATHEMATICS
Marc Coppens
{"title":"具有半群\\(\\langle a;b\\rangle \\)及相关半群的Weierstrass点的唯一性","authors":"Marc Coppens","doi":"10.1007/s12188-019-00201-y","DOIUrl":null,"url":null,"abstract":"<div><p>Assume <i>a</i> and <span>\\(b=na+r\\)</span> with <span>\\(n \\ge 1\\)</span> and <span>\\(0&lt;r&lt;a\\)</span> are relatively prime integers. In case <i>C</i> is a smooth curve and <i>P</i> is a point on <i>C</i> with Weierstrass semigroup equal to <span>\\(&lt;a;b&gt;\\)</span> then <i>C</i> is called a <span>\\(C_{a;b}\\)</span>-curve. In case <span>\\(r \\ne a-1\\)</span> and <span>\\(b \\ne a+1\\)</span> we prove <i>C</i> has no other point <span>\\(Q \\ne P\\)</span> having Weierstrass semigroup equal to <span>\\(&lt;a;b&gt;\\)</span>, in which case we say that the Weierstrass semigroup <span>\\(&lt;a;b&gt;\\)</span> occurs at most once. The curve <span>\\(C_{a;b}\\)</span> has genus <span>\\((a-1)(b-1)/2\\)</span> and the result is generalized to genus <span>\\(g&lt;(a-1)(b-1)/2\\)</span>. We obtain a lower bound on <i>g</i> (sharp in many cases) such that all Weierstrass semigroups of genus <i>g</i> containing <span>\\(&lt;a;b&gt;\\)</span> occur at most once.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-019-00201-y","citationCount":"0","resultStr":"{\"title\":\"The uniqueness of Weierstrass points with semigroup \\\\(\\\\langle a;b\\\\rangle \\\\) and related semigroups\",\"authors\":\"Marc Coppens\",\"doi\":\"10.1007/s12188-019-00201-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Assume <i>a</i> and <span>\\\\(b=na+r\\\\)</span> with <span>\\\\(n \\\\ge 1\\\\)</span> and <span>\\\\(0&lt;r&lt;a\\\\)</span> are relatively prime integers. In case <i>C</i> is a smooth curve and <i>P</i> is a point on <i>C</i> with Weierstrass semigroup equal to <span>\\\\(&lt;a;b&gt;\\\\)</span> then <i>C</i> is called a <span>\\\\(C_{a;b}\\\\)</span>-curve. In case <span>\\\\(r \\\\ne a-1\\\\)</span> and <span>\\\\(b \\\\ne a+1\\\\)</span> we prove <i>C</i> has no other point <span>\\\\(Q \\\\ne P\\\\)</span> having Weierstrass semigroup equal to <span>\\\\(&lt;a;b&gt;\\\\)</span>, in which case we say that the Weierstrass semigroup <span>\\\\(&lt;a;b&gt;\\\\)</span> occurs at most once. The curve <span>\\\\(C_{a;b}\\\\)</span> has genus <span>\\\\((a-1)(b-1)/2\\\\)</span> and the result is generalized to genus <span>\\\\(g&lt;(a-1)(b-1)/2\\\\)</span>. We obtain a lower bound on <i>g</i> (sharp in many cases) such that all Weierstrass semigroups of genus <i>g</i> containing <span>\\\\(&lt;a;b&gt;\\\\)</span> occur at most once.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-019-00201-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-019-00201-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-019-00201-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设a和\(b=na+r\)与\(n\ge 1\)和\(0<;r<;a\)是相对素数。如果C是光滑曲线,P是Weierstrass半群等于\(<;a;b>;\)的C上的点,则C称为\(C_{a;b}\)-曲线。在情形\(r a-1\)和\(b a+1\)中,我们证明了C没有其他点\(Q\ ne P\)具有等于\(<;a;b>;\)的Weierstrass半群,在这种情况下,我们说Weierstras半群\(<;a;b>;)最多出现一次。曲线\(C_{a;b}\)具有亏格\((a-1)(b-1)/2\),并将结果推广到亏格\。我们得到了g的下界(在许多情况下是sharp),使得所有包含\(<;a;b>;\)的亏格的Weierstrass半群最多出现一次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The uniqueness of Weierstrass points with semigroup \(\langle a;b\rangle \) and related semigroups

Assume a and \(b=na+r\) with \(n \ge 1\) and \(0<r<a\) are relatively prime integers. In case C is a smooth curve and P is a point on C with Weierstrass semigroup equal to \(<a;b>\) then C is called a \(C_{a;b}\)-curve. In case \(r \ne a-1\) and \(b \ne a+1\) we prove C has no other point \(Q \ne P\) having Weierstrass semigroup equal to \(<a;b>\), in which case we say that the Weierstrass semigroup \(<a;b>\) occurs at most once. The curve \(C_{a;b}\) has genus \((a-1)(b-1)/2\) and the result is generalized to genus \(g<(a-1)(b-1)/2\). We obtain a lower bound on g (sharp in many cases) such that all Weierstrass semigroups of genus g containing \(<a;b>\) occur at most once.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信