{"title":"半简单弱对称伪黎曼流形","authors":"Zhiqi Chen, Joseph A. Wolf","doi":"10.1007/s12188-018-0195-8","DOIUrl":null,"url":null,"abstract":"<div><p>We develop the classification of weakly symmetric pseudo-Riemannian manifolds <i>G</i> / <i>H</i> where <i>G</i> is a semisimple Lie group and <i>H</i> is a reductive subgroup. We derive the classification from the cases where <i>G</i> is compact, and then we discuss the (isotropy) representation of <i>H</i> on the tangent space of <i>G</i> / <i>H</i> and the signature of the invariant pseudo-Riemannian metric. As a consequence we obtain the classification of semisimple weakly symmetric manifolds of Lorentz signature <span>\\((n-1,1)\\)</span> and trans-Lorentzian signature <span>\\((n-2,2)\\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"88 2","pages":"331 - 369"},"PeriodicalIF":0.4000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-018-0195-8","citationCount":"5","resultStr":"{\"title\":\"Semisimple weakly symmetric pseudo-Riemannian manifolds\",\"authors\":\"Zhiqi Chen, Joseph A. Wolf\",\"doi\":\"10.1007/s12188-018-0195-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop the classification of weakly symmetric pseudo-Riemannian manifolds <i>G</i> / <i>H</i> where <i>G</i> is a semisimple Lie group and <i>H</i> is a reductive subgroup. We derive the classification from the cases where <i>G</i> is compact, and then we discuss the (isotropy) representation of <i>H</i> on the tangent space of <i>G</i> / <i>H</i> and the signature of the invariant pseudo-Riemannian metric. As a consequence we obtain the classification of semisimple weakly symmetric manifolds of Lorentz signature <span>\\\\((n-1,1)\\\\)</span> and trans-Lorentzian signature <span>\\\\((n-2,2)\\\\)</span>.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"88 2\",\"pages\":\"331 - 369\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-018-0195-8\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-018-0195-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-018-0195-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We develop the classification of weakly symmetric pseudo-Riemannian manifolds G / H where G is a semisimple Lie group and H is a reductive subgroup. We derive the classification from the cases where G is compact, and then we discuss the (isotropy) representation of H on the tangent space of G / H and the signature of the invariant pseudo-Riemannian metric. As a consequence we obtain the classification of semisimple weakly symmetric manifolds of Lorentz signature \((n-1,1)\) and trans-Lorentzian signature \((n-2,2)\).
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.