半简单弱对称伪黎曼流形

IF 0.4 4区 数学 Q4 MATHEMATICS
Zhiqi Chen, Joseph A. Wolf
{"title":"半简单弱对称伪黎曼流形","authors":"Zhiqi Chen,&nbsp;Joseph A. Wolf","doi":"10.1007/s12188-018-0195-8","DOIUrl":null,"url":null,"abstract":"<div><p>We develop the classification of weakly symmetric pseudo-Riemannian manifolds <i>G</i> / <i>H</i> where <i>G</i> is a semisimple Lie group and <i>H</i> is a reductive subgroup. We derive the classification from the cases where <i>G</i> is compact, and then we discuss the (isotropy) representation of <i>H</i> on the tangent space of <i>G</i> / <i>H</i> and the signature of the invariant pseudo-Riemannian metric. As a consequence we obtain the classification of semisimple weakly symmetric manifolds of Lorentz signature <span>\\((n-1,1)\\)</span> and trans-Lorentzian signature <span>\\((n-2,2)\\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"88 2","pages":"331 - 369"},"PeriodicalIF":0.4000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-018-0195-8","citationCount":"5","resultStr":"{\"title\":\"Semisimple weakly symmetric pseudo-Riemannian manifolds\",\"authors\":\"Zhiqi Chen,&nbsp;Joseph A. Wolf\",\"doi\":\"10.1007/s12188-018-0195-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop the classification of weakly symmetric pseudo-Riemannian manifolds <i>G</i> / <i>H</i> where <i>G</i> is a semisimple Lie group and <i>H</i> is a reductive subgroup. We derive the classification from the cases where <i>G</i> is compact, and then we discuss the (isotropy) representation of <i>H</i> on the tangent space of <i>G</i> / <i>H</i> and the signature of the invariant pseudo-Riemannian metric. As a consequence we obtain the classification of semisimple weakly symmetric manifolds of Lorentz signature <span>\\\\((n-1,1)\\\\)</span> and trans-Lorentzian signature <span>\\\\((n-2,2)\\\\)</span>.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"88 2\",\"pages\":\"331 - 369\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-018-0195-8\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-018-0195-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-018-0195-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们发展了弱对称伪黎曼流形G/H的分类,其中G是半单李群,H是约化子群。我们从G是紧致的情况导出了分类,然后讨论了H在G/H的切空间上的(各向同性)表示和不变伪黎曼度量的特征。因此,我们得到了洛伦兹签名((n-1,1))和反洛伦兹签名的半单弱对称流形((n-2,2))的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semisimple weakly symmetric pseudo-Riemannian manifolds

We develop the classification of weakly symmetric pseudo-Riemannian manifolds G / H where G is a semisimple Lie group and H is a reductive subgroup. We derive the classification from the cases where G is compact, and then we discuss the (isotropy) representation of H on the tangent space of G / H and the signature of the invariant pseudo-Riemannian metric. As a consequence we obtain the classification of semisimple weakly symmetric manifolds of Lorentz signature \((n-1,1)\) and trans-Lorentzian signature \((n-2,2)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信