从gs -一元到Oplax笛卡尔范畴:构造与功能完备性

IF 0.6 4区 数学 Q3 MATHEMATICS
Tobias Fritz, Fabio Gadducci, Davide Trotta, Andrea Corradini
{"title":"从gs -一元到Oplax笛卡尔范畴:构造与功能完备性","authors":"Tobias Fritz,&nbsp;Fabio Gadducci,&nbsp;Davide Trotta,&nbsp;Andrea Corradini","doi":"10.1007/s10485-023-09750-z","DOIUrl":null,"url":null,"abstract":"<div><p>Originally introduced in the context of the algebraic approach to term graph rewriting, the notion of gs-monoidal category has surfaced a few times under different monikers in the last decades. They can be thought of as symmetric monoidal categories whose arrows are generalised relations, with enough structure to talk about domains and partial functions, but less structure than cartesian bicategories. The aim of this paper is threefold. The first goal is to extend the original definition of gs-monoidality by enriching it with a preorder on arrows, giving rise to what we call oplax cartesian categories. Second, we show that (preorder-enriched) gs-monoidal categories naturally arise both as Kleisli categories and as span categories, and the relation between the resulting formalisms is explored. Finally, we present two theorems concerning Yoneda embeddings on the one hand and functorial completeness on the other, the latter inducing a completeness result also for lax functors from oplax cartesian categories to <span>\\(\\textbf{Rel}\\)</span>.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"From Gs-monoidal to Oplax Cartesian Categories: Constructions and Functorial Completeness\",\"authors\":\"Tobias Fritz,&nbsp;Fabio Gadducci,&nbsp;Davide Trotta,&nbsp;Andrea Corradini\",\"doi\":\"10.1007/s10485-023-09750-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Originally introduced in the context of the algebraic approach to term graph rewriting, the notion of gs-monoidal category has surfaced a few times under different monikers in the last decades. They can be thought of as symmetric monoidal categories whose arrows are generalised relations, with enough structure to talk about domains and partial functions, but less structure than cartesian bicategories. The aim of this paper is threefold. The first goal is to extend the original definition of gs-monoidality by enriching it with a preorder on arrows, giving rise to what we call oplax cartesian categories. Second, we show that (preorder-enriched) gs-monoidal categories naturally arise both as Kleisli categories and as span categories, and the relation between the resulting formalisms is explored. Finally, we present two theorems concerning Yoneda embeddings on the one hand and functorial completeness on the other, the latter inducing a completeness result also for lax functors from oplax cartesian categories to <span>\\\\(\\\\textbf{Rel}\\\\)</span>.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-023-09750-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09750-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

最初是在项图重写的代数方法的背景下引入的,在过去的几十年里,gs单调范畴的概念在不同的名字下出现了几次。它们可以被认为是对称的单范畴,其箭头是广义关系,具有足够的结构来讨论域和偏函数,但结构不如笛卡尔双范畴。本文的目的有三个。第一个目标是通过用箭头上的预序来丰富gs单调性的原始定义,从而产生我们所说的oplax-cartesian范畴。其次,我们证明了(预序富集的)gs单oid范畴作为Kleisli范畴和跨度范畴自然产生,并探讨了由此产生的形式主义之间的关系。最后,我们给出了两个关于Yoneda嵌入的定理和另一个关于函数完备性的定理,后者也给出了从oplax-cartesian范畴到\(\textbf{Rel}\)的lax函子的完备性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From Gs-monoidal to Oplax Cartesian Categories: Constructions and Functorial Completeness

From Gs-monoidal to Oplax Cartesian Categories: Constructions and Functorial Completeness

Originally introduced in the context of the algebraic approach to term graph rewriting, the notion of gs-monoidal category has surfaced a few times under different monikers in the last decades. They can be thought of as symmetric monoidal categories whose arrows are generalised relations, with enough structure to talk about domains and partial functions, but less structure than cartesian bicategories. The aim of this paper is threefold. The first goal is to extend the original definition of gs-monoidality by enriching it with a preorder on arrows, giving rise to what we call oplax cartesian categories. Second, we show that (preorder-enriched) gs-monoidal categories naturally arise both as Kleisli categories and as span categories, and the relation between the resulting formalisms is explored. Finally, we present two theorems concerning Yoneda embeddings on the one hand and functorial completeness on the other, the latter inducing a completeness result also for lax functors from oplax cartesian categories to \(\textbf{Rel}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信