Tapan Kumar Sankar, Amit Kumar, Balram Ambade, Dilip Kumar Mahato, Ali Jaan Hussain, Shrikanta Shankar Sethi, Faruq Mohammad, Ahmed A. Soleiman, Sneha Gautam
{"title":"2019冠状病毒病对东印度地区黑碳和一氧化碳水平的影响及其健康风险评估","authors":"Tapan Kumar Sankar, Amit Kumar, Balram Ambade, Dilip Kumar Mahato, Ali Jaan Hussain, Shrikanta Shankar Sethi, Faruq Mohammad, Ahmed A. Soleiman, Sneha Gautam","doi":"10.1007/s41810-023-00187-4","DOIUrl":null,"url":null,"abstract":"<div><p>The present research aims to describe the measurement of the changes in air pollutants such as black carbon (BC), PM<sub>2.5,</sub> and CO concentrations levels, and estimation of their source apportionment and health risk during normal period (NP) as well as lockdown period (LP) in Jamshedpur city. The urban atmospheric pollutants mostly BC, PM<sub>2.5</sub> and CO concentrations were observed gradual fall during LP. The averaged mass concentration of BC, PM<sub>2.5</sub> and CO was found about 38.46 ± 1.91 µgm<sup>−3</sup>, 176.55 ± 21.72 µgm<sup>−3</sup>, 840 ± 282 ppbv in NP and 9.68 ± 2.36 µgm<sup>−3</sup>, 42.86 ± 18.97 µgm<sup>−3</sup>, 175.88 ± 121.82 ppbv during LP, respectively. BC, PM<sub>2.5</sub>, and CO concentrations were shown to be lower during LP as compared to NP. This may be because of prohibited of all human activities due to COVID-19 pandemic. The source apportionment analysis of BC indicated that the biomass burning (62.5%) contribution was high as compared to fossil fuel emission (37.5%) at LP. The air trajectory model showed that most of the air masses were coming from western part of India and also some fresh marine air masses were received at the located position. The health risk for respective health effects of CVM (cardiovascular mortality), LC (lung cancer), LBW (low birth weight), and PLEDSC (percentage lung function decrement of school-aged children) due to exposure to BC was evaluated as 9.76, 4.8, 8.59 and 19.59 PSC in NP and 8.35, 4.1, 7.35 and 16.77 PSC in LP.</p><h3>Graphical abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"7 3","pages":"368 - 379"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of COVID-19 on Black Carbon and Carbon Monoxide Levels and Its Health Risk Assessment Over East India\",\"authors\":\"Tapan Kumar Sankar, Amit Kumar, Balram Ambade, Dilip Kumar Mahato, Ali Jaan Hussain, Shrikanta Shankar Sethi, Faruq Mohammad, Ahmed A. Soleiman, Sneha Gautam\",\"doi\":\"10.1007/s41810-023-00187-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present research aims to describe the measurement of the changes in air pollutants such as black carbon (BC), PM<sub>2.5,</sub> and CO concentrations levels, and estimation of their source apportionment and health risk during normal period (NP) as well as lockdown period (LP) in Jamshedpur city. The urban atmospheric pollutants mostly BC, PM<sub>2.5</sub> and CO concentrations were observed gradual fall during LP. The averaged mass concentration of BC, PM<sub>2.5</sub> and CO was found about 38.46 ± 1.91 µgm<sup>−3</sup>, 176.55 ± 21.72 µgm<sup>−3</sup>, 840 ± 282 ppbv in NP and 9.68 ± 2.36 µgm<sup>−3</sup>, 42.86 ± 18.97 µgm<sup>−3</sup>, 175.88 ± 121.82 ppbv during LP, respectively. BC, PM<sub>2.5</sub>, and CO concentrations were shown to be lower during LP as compared to NP. This may be because of prohibited of all human activities due to COVID-19 pandemic. The source apportionment analysis of BC indicated that the biomass burning (62.5%) contribution was high as compared to fossil fuel emission (37.5%) at LP. The air trajectory model showed that most of the air masses were coming from western part of India and also some fresh marine air masses were received at the located position. The health risk for respective health effects of CVM (cardiovascular mortality), LC (lung cancer), LBW (low birth weight), and PLEDSC (percentage lung function decrement of school-aged children) due to exposure to BC was evaluated as 9.76, 4.8, 8.59 and 19.59 PSC in NP and 8.35, 4.1, 7.35 and 16.77 PSC in LP.</p><h3>Graphical abstract</h3>\\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\\n </div>\",\"PeriodicalId\":36991,\"journal\":{\"name\":\"Aerosol Science and Engineering\",\"volume\":\"7 3\",\"pages\":\"368 - 379\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41810-023-00187-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-023-00187-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of COVID-19 on Black Carbon and Carbon Monoxide Levels and Its Health Risk Assessment Over East India
The present research aims to describe the measurement of the changes in air pollutants such as black carbon (BC), PM2.5, and CO concentrations levels, and estimation of their source apportionment and health risk during normal period (NP) as well as lockdown period (LP) in Jamshedpur city. The urban atmospheric pollutants mostly BC, PM2.5 and CO concentrations were observed gradual fall during LP. The averaged mass concentration of BC, PM2.5 and CO was found about 38.46 ± 1.91 µgm−3, 176.55 ± 21.72 µgm−3, 840 ± 282 ppbv in NP and 9.68 ± 2.36 µgm−3, 42.86 ± 18.97 µgm−3, 175.88 ± 121.82 ppbv during LP, respectively. BC, PM2.5, and CO concentrations were shown to be lower during LP as compared to NP. This may be because of prohibited of all human activities due to COVID-19 pandemic. The source apportionment analysis of BC indicated that the biomass burning (62.5%) contribution was high as compared to fossil fuel emission (37.5%) at LP. The air trajectory model showed that most of the air masses were coming from western part of India and also some fresh marine air masses were received at the located position. The health risk for respective health effects of CVM (cardiovascular mortality), LC (lung cancer), LBW (low birth weight), and PLEDSC (percentage lung function decrement of school-aged children) due to exposure to BC was evaluated as 9.76, 4.8, 8.59 and 19.59 PSC in NP and 8.35, 4.1, 7.35 and 16.77 PSC in LP.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.