{"title":"最小假设下的经验尾条件分配及其一致性","authors":"N. V. Gribkova, J. Su, R. Zitikis","doi":"10.1007/s10463-021-00813-3","DOIUrl":null,"url":null,"abstract":"<div><p>Under minimal assumptions, we prove that an empirical estimator of the tail conditional allocation (TCA), also known as the marginal expected shortfall, is consistent. Examples are provided to confirm the minimality of the assumptions. A simulation study illustrates the performance of the estimator in the context of developing confidence intervals for the TCA. The philosophy adopted in the present paper relies on three principles: easiness of practical use, mathematical rigor, and practical justifiability and verifiability of assumptions.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-021-00813-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Empirical tail conditional allocation and its consistency under minimal assumptions\",\"authors\":\"N. V. Gribkova, J. Su, R. Zitikis\",\"doi\":\"10.1007/s10463-021-00813-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Under minimal assumptions, we prove that an empirical estimator of the tail conditional allocation (TCA), also known as the marginal expected shortfall, is consistent. Examples are provided to confirm the minimality of the assumptions. A simulation study illustrates the performance of the estimator in the context of developing confidence intervals for the TCA. The philosophy adopted in the present paper relies on three principles: easiness of practical use, mathematical rigor, and practical justifiability and verifiability of assumptions.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10463-021-00813-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-021-00813-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-021-00813-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Empirical tail conditional allocation and its consistency under minimal assumptions
Under minimal assumptions, we prove that an empirical estimator of the tail conditional allocation (TCA), also known as the marginal expected shortfall, is consistent. Examples are provided to confirm the minimality of the assumptions. A simulation study illustrates the performance of the estimator in the context of developing confidence intervals for the TCA. The philosophy adopted in the present paper relies on three principles: easiness of practical use, mathematical rigor, and practical justifiability and verifiability of assumptions.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.