{"title":"增强了流体输送管道的振动抑制和能量收集","authors":"Yang Jin, Tianzhi Yang","doi":"10.1007/s10483-023-3022-8","DOIUrl":null,"url":null,"abstract":"<div><p>A novel vibration absorber is designed to suppress vibrations in fluid-conveying pipes subject to varying fluid speeds. The proposed absorber combines the fundamental principles of nonlinear energy sinks (NESs) and nonlinear energy harvesters (NEHs). The governing equation is derived, and a second-order discrete system is used to assess the performance of the developed device. The results demonstrate that the proposed absorber achieves significantly enhanced energy dissipation efficiency, reaching up to 95%, over a wider frequency range. Additionally, it successfully harvests additional electric energy. This research establishes a promising avenue for the development of new nonlinear devices aimed at suppressing fluid-conveying pipe vibrations across a broad frequency spectrum.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 9","pages":"1487 - 1496"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced vibration suppression and energy harvesting in fluid-conveying pipes\",\"authors\":\"Yang Jin, Tianzhi Yang\",\"doi\":\"10.1007/s10483-023-3022-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel vibration absorber is designed to suppress vibrations in fluid-conveying pipes subject to varying fluid speeds. The proposed absorber combines the fundamental principles of nonlinear energy sinks (NESs) and nonlinear energy harvesters (NEHs). The governing equation is derived, and a second-order discrete system is used to assess the performance of the developed device. The results demonstrate that the proposed absorber achieves significantly enhanced energy dissipation efficiency, reaching up to 95%, over a wider frequency range. Additionally, it successfully harvests additional electric energy. This research establishes a promising avenue for the development of new nonlinear devices aimed at suppressing fluid-conveying pipe vibrations across a broad frequency spectrum.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 9\",\"pages\":\"1487 - 1496\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3022-8\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3022-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Enhanced vibration suppression and energy harvesting in fluid-conveying pipes
A novel vibration absorber is designed to suppress vibrations in fluid-conveying pipes subject to varying fluid speeds. The proposed absorber combines the fundamental principles of nonlinear energy sinks (NESs) and nonlinear energy harvesters (NEHs). The governing equation is derived, and a second-order discrete system is used to assess the performance of the developed device. The results demonstrate that the proposed absorber achieves significantly enhanced energy dissipation efficiency, reaching up to 95%, over a wider frequency range. Additionally, it successfully harvests additional electric energy. This research establishes a promising avenue for the development of new nonlinear devices aimed at suppressing fluid-conveying pipe vibrations across a broad frequency spectrum.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.