聚焦超声刺激对人颅骨的数值评价

IF 1.7 4区 物理与天体物理
Yi Huang, Peng Wen, Bo Song, Yan Li
{"title":"聚焦超声刺激对人颅骨的数值评价","authors":"Yi Huang,&nbsp;Peng Wen,&nbsp;Bo Song,&nbsp;Yan Li","doi":"10.1007/s40857-023-00289-6","DOIUrl":null,"url":null,"abstract":"<div><p>Transcranial focused ultrasound stimulation is a promising brain stimulation technique for its noninvasiveness and higher spatial resolutions and is used for various neuromodulation applications. As the skull is the primary barrier to delivering ultrasound to the deep brain region, it induces unpredictable ultrasound exposure. The objective of the study is to design customised transducers and assess the effects of the skull on ultrasound wave propagation. Computational skull models were constructed using computerised tomography scans. A full-wave finite-difference time-domain simulation platform, Sim4Life, was then used to design and simulate ultrasound wave propagation. In addition, the impacts of the skull were assessed through sensitivity analysis in the intracranial intensity, pressure, full width at half maximum, and energy deposition. Compared to the intracranial intensity distribution when the transducer is placed over the top area of the skull, the peak intensity increased by 23.4% for transmission through the temporal window. The temporal window, the thinnest part of the skull, provides a site for intracranial peak intensity and optimal focal spot area using focused ultrasound. The numerical investigation in this study provided a guideline for targeting and dosing, accounting for and lessening variability in studies addressing transcranial focused ultrasound applications.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":"51 2","pages":"233 - 241"},"PeriodicalIF":1.7000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Evaluation of the Human Skull with Focused Ultrasound Stimulation\",\"authors\":\"Yi Huang,&nbsp;Peng Wen,&nbsp;Bo Song,&nbsp;Yan Li\",\"doi\":\"10.1007/s40857-023-00289-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transcranial focused ultrasound stimulation is a promising brain stimulation technique for its noninvasiveness and higher spatial resolutions and is used for various neuromodulation applications. As the skull is the primary barrier to delivering ultrasound to the deep brain region, it induces unpredictable ultrasound exposure. The objective of the study is to design customised transducers and assess the effects of the skull on ultrasound wave propagation. Computational skull models were constructed using computerised tomography scans. A full-wave finite-difference time-domain simulation platform, Sim4Life, was then used to design and simulate ultrasound wave propagation. In addition, the impacts of the skull were assessed through sensitivity analysis in the intracranial intensity, pressure, full width at half maximum, and energy deposition. Compared to the intracranial intensity distribution when the transducer is placed over the top area of the skull, the peak intensity increased by 23.4% for transmission through the temporal window. The temporal window, the thinnest part of the skull, provides a site for intracranial peak intensity and optimal focal spot area using focused ultrasound. The numerical investigation in this study provided a guideline for targeting and dosing, accounting for and lessening variability in studies addressing transcranial focused ultrasound applications.</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":\"51 2\",\"pages\":\"233 - 241\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-023-00289-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-023-00289-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经颅聚焦超声刺激是一种很有前途的脑刺激技术,具有无创性和较高的空间分辨率,可用于各种神经调控应用。由于头骨是将超声波输送到大脑深处的主要屏障,它会导致不可预测的超声波暴露。该研究的目的是设计定制的换能器,并评估头骨对超声波传播的影响。使用计算机断层扫描构建了计算颅骨模型。然后使用全波时域有限差分模拟平台Sim4Life来设计和模拟超声波的传播。此外,通过对颅内强度、压力、半最大全宽和能量沉积的敏感性分析,评估了颅骨的影响。与将换能器放置在颅骨顶部区域时的颅内强度分布相比,通过颞窗传输的峰值强度增加了23.4%。颞窗是颅骨最薄的部分,使用聚焦超声为颅内峰值强度和最佳焦斑面积提供了一个位置。本研究中的数值研究为靶向和给药提供了指导,说明并减少了经颅聚焦超声应用研究的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical Evaluation of the Human Skull with Focused Ultrasound Stimulation

Numerical Evaluation of the Human Skull with Focused Ultrasound Stimulation

Transcranial focused ultrasound stimulation is a promising brain stimulation technique for its noninvasiveness and higher spatial resolutions and is used for various neuromodulation applications. As the skull is the primary barrier to delivering ultrasound to the deep brain region, it induces unpredictable ultrasound exposure. The objective of the study is to design customised transducers and assess the effects of the skull on ultrasound wave propagation. Computational skull models were constructed using computerised tomography scans. A full-wave finite-difference time-domain simulation platform, Sim4Life, was then used to design and simulate ultrasound wave propagation. In addition, the impacts of the skull were assessed through sensitivity analysis in the intracranial intensity, pressure, full width at half maximum, and energy deposition. Compared to the intracranial intensity distribution when the transducer is placed over the top area of the skull, the peak intensity increased by 23.4% for transmission through the temporal window. The temporal window, the thinnest part of the skull, provides a site for intracranial peak intensity and optimal focal spot area using focused ultrasound. The numerical investigation in this study provided a guideline for targeting and dosing, accounting for and lessening variability in studies addressing transcranial focused ultrasound applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acoustics Australia
Acoustics Australia ACOUSTICS-
自引率
5.90%
发文量
24
期刊介绍: Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信