{"title":"晶状体间隙的塞弗特颤动","authors":"Hansjörg Geiges, Christian Lange","doi":"10.1007/s12188-017-0188-z","DOIUrl":null,"url":null,"abstract":"<div><p>We classify the Seifert fibrations of any given lens space <i>L</i>(<i>p</i>, <i>q</i>). Starting from any pair of coprime non-zero integers <span>\\(\\alpha _1^0,\\alpha _2^0\\)</span>, we give an algorithmic construction of a Seifert fibration <span>\\(L(p,q)\\rightarrow S^2(\\alpha |\\alpha _1^0|,\\alpha |\\alpha _2^0|)\\)</span>, where the natural number <span>\\(\\alpha \\)</span> is determined by the algorithm. This algorithm produces all possible Seifert fibrations, and the isomorphisms between the resulting Seifert fibrations are described completely. Also, we show that all Seifert fibrations are isomorphic to certain standard models.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"88 1","pages":"1 - 22"},"PeriodicalIF":0.4000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-017-0188-z","citationCount":"31","resultStr":"{\"title\":\"Seifert fibrations of lens spaces\",\"authors\":\"Hansjörg Geiges, Christian Lange\",\"doi\":\"10.1007/s12188-017-0188-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We classify the Seifert fibrations of any given lens space <i>L</i>(<i>p</i>, <i>q</i>). Starting from any pair of coprime non-zero integers <span>\\\\(\\\\alpha _1^0,\\\\alpha _2^0\\\\)</span>, we give an algorithmic construction of a Seifert fibration <span>\\\\(L(p,q)\\\\rightarrow S^2(\\\\alpha |\\\\alpha _1^0|,\\\\alpha |\\\\alpha _2^0|)\\\\)</span>, where the natural number <span>\\\\(\\\\alpha \\\\)</span> is determined by the algorithm. This algorithm produces all possible Seifert fibrations, and the isomorphisms between the resulting Seifert fibrations are described completely. Also, we show that all Seifert fibrations are isomorphic to certain standard models.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"88 1\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-017-0188-z\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-017-0188-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-017-0188-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We classify the Seifert fibrations of any given lens space L(p, q). Starting from any pair of coprime non-zero integers \(\alpha _1^0,\alpha _2^0\), we give an algorithmic construction of a Seifert fibration \(L(p,q)\rightarrow S^2(\alpha |\alpha _1^0|,\alpha |\alpha _2^0|)\), where the natural number \(\alpha \) is determined by the algorithm. This algorithm produces all possible Seifert fibrations, and the isomorphisms between the resulting Seifert fibrations are described completely. Also, we show that all Seifert fibrations are isomorphic to certain standard models.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.