{"title":"高压大功率磁阻发电、输电与管理","authors":"Xinbin Hou, Li Wang, Zili Liu","doi":"10.1007/s42423-022-00099-4","DOIUrl":null,"url":null,"abstract":"<div><p>Space Power Satellite (SPS) is a huge spacecraft to utilize solar energy in space. Because of the huge size, immense mass and high power, there exist many technical difficulties. For a GW SPS system, the generated electric power in space will be over 2 GW, and the whole area of the solar array will be several square kilometers. The high-power electricity generation, transmission and management in space becomes a huge challenge. In the paper, the primary scheme of MR-SPS concept is presented and two important sub-systems, Solar Energy Collection and Conversion (SECC), Power Transmission and Management (PTM) are introduced. The SECC sub-system includes fifty solar sub-arrays. Each solar sub-array is composed of twelve solar array modules. The area of each solar sub-array is about 0.12 km<sup>2</sup>. The solar sub-arrays transmit electric power to the cables installed on the main structure of MR-SPS by 100 middle power rotary joints. PTM sub-system converts, transmits and distributes the output electric power of SECC sub-system. Most of electric power is transmitted to the antenna and is distributed in the antenna. The remaining electric power is transmitted and distributed to the service equipments for the operation of SPS. The mix of distributed and centralized high-voltage PTM is adopted to meet the requirement of electric power supply of the electric equipments on SPS. Typical space environment influencing high-power electric system is analyzed. The key technologies need to be researched and solved including high-efficient, long-life thin-film GaAs PV cell, ultra-large–high-voltage (500 V) solar array module, high-power conductive rotary joint, ultra-high-voltage (20 kV) cables, high-power converter, high-power switch, etc., and assembly and maintenance of the sub-systems.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"5 1","pages":"31 - 37"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Voltage and High-Power Electricity Generation, Transmission and Management of MR-SPS\",\"authors\":\"Xinbin Hou, Li Wang, Zili Liu\",\"doi\":\"10.1007/s42423-022-00099-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Space Power Satellite (SPS) is a huge spacecraft to utilize solar energy in space. Because of the huge size, immense mass and high power, there exist many technical difficulties. For a GW SPS system, the generated electric power in space will be over 2 GW, and the whole area of the solar array will be several square kilometers. The high-power electricity generation, transmission and management in space becomes a huge challenge. In the paper, the primary scheme of MR-SPS concept is presented and two important sub-systems, Solar Energy Collection and Conversion (SECC), Power Transmission and Management (PTM) are introduced. The SECC sub-system includes fifty solar sub-arrays. Each solar sub-array is composed of twelve solar array modules. The area of each solar sub-array is about 0.12 km<sup>2</sup>. The solar sub-arrays transmit electric power to the cables installed on the main structure of MR-SPS by 100 middle power rotary joints. PTM sub-system converts, transmits and distributes the output electric power of SECC sub-system. Most of electric power is transmitted to the antenna and is distributed in the antenna. The remaining electric power is transmitted and distributed to the service equipments for the operation of SPS. The mix of distributed and centralized high-voltage PTM is adopted to meet the requirement of electric power supply of the electric equipments on SPS. Typical space environment influencing high-power electric system is analyzed. The key technologies need to be researched and solved including high-efficient, long-life thin-film GaAs PV cell, ultra-large–high-voltage (500 V) solar array module, high-power conductive rotary joint, ultra-high-voltage (20 kV) cables, high-power converter, high-power switch, etc., and assembly and maintenance of the sub-systems.</p></div>\",\"PeriodicalId\":100039,\"journal\":{\"name\":\"Advances in Astronautics Science and Technology\",\"volume\":\"5 1\",\"pages\":\"31 - 37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronautics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42423-022-00099-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-022-00099-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Voltage and High-Power Electricity Generation, Transmission and Management of MR-SPS
Space Power Satellite (SPS) is a huge spacecraft to utilize solar energy in space. Because of the huge size, immense mass and high power, there exist many technical difficulties. For a GW SPS system, the generated electric power in space will be over 2 GW, and the whole area of the solar array will be several square kilometers. The high-power electricity generation, transmission and management in space becomes a huge challenge. In the paper, the primary scheme of MR-SPS concept is presented and two important sub-systems, Solar Energy Collection and Conversion (SECC), Power Transmission and Management (PTM) are introduced. The SECC sub-system includes fifty solar sub-arrays. Each solar sub-array is composed of twelve solar array modules. The area of each solar sub-array is about 0.12 km2. The solar sub-arrays transmit electric power to the cables installed on the main structure of MR-SPS by 100 middle power rotary joints. PTM sub-system converts, transmits and distributes the output electric power of SECC sub-system. Most of electric power is transmitted to the antenna and is distributed in the antenna. The remaining electric power is transmitted and distributed to the service equipments for the operation of SPS. The mix of distributed and centralized high-voltage PTM is adopted to meet the requirement of electric power supply of the electric equipments on SPS. Typical space environment influencing high-power electric system is analyzed. The key technologies need to be researched and solved including high-efficient, long-life thin-film GaAs PV cell, ultra-large–high-voltage (500 V) solar array module, high-power conductive rotary joint, ultra-high-voltage (20 kV) cables, high-power converter, high-power switch, etc., and assembly and maintenance of the sub-systems.