一类弹子轨迹凸域扩展辛容量的Brunn-Minkowski型不等式及长度估计

IF 0.4 4区 数学 Q4 MATHEMATICS
Rongrong Jin, Guangcun Lu
{"title":"一类弹子轨迹凸域扩展辛容量的Brunn-Minkowski型不等式及长度估计","authors":"Rongrong Jin,&nbsp;Guangcun Lu","doi":"10.1007/s12188-023-00263-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we firstly generalize the Brunn–Minkowski type inequality for Ekeland–Hofer–Zehnder symplectic capacity of bounded convex domains established by Artstein-Avidan–Ostrover in 2008 to extended symplectic capacities of bounded convex domains constructed by authors based on a class of Hamiltonian non-periodic boundary value problems recently. Then we introduce a class of non-periodic billiards in convex domains, and for them we prove some corresponding results to those for periodic billiards in convex domains obtained by Artstein-Avidan–Ostrover in 2012.\n</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Brunn–Minkowski type inequality for extended symplectic capacities of convex domains and length estimate for a class of billiard trajectories\",\"authors\":\"Rongrong Jin,&nbsp;Guangcun Lu\",\"doi\":\"10.1007/s12188-023-00263-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we firstly generalize the Brunn–Minkowski type inequality for Ekeland–Hofer–Zehnder symplectic capacity of bounded convex domains established by Artstein-Avidan–Ostrover in 2008 to extended symplectic capacities of bounded convex domains constructed by authors based on a class of Hamiltonian non-periodic boundary value problems recently. Then we introduce a class of non-periodic billiards in convex domains, and for them we prove some corresponding results to those for periodic billiards in convex domains obtained by Artstein-Avidan–Ostrover in 2012.\\n</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-023-00263-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-023-00263-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首先将Artstein Avidan–Ostrover于2008年建立的有界凸域的Ekeland–Hofer–Zehnder辛容量的Brunn–Minkowski型不等式推广到作者最近基于一类Hamiltonian非周期边值问题构建的有界凸域的扩展辛容量。然后,我们引入了一类凸域中的非周期台球,并证明了与Artstein Avidan–Ostrover在2012年获得的凸域中周期台球的一些相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Brunn–Minkowski type inequality for extended symplectic capacities of convex domains and length estimate for a class of billiard trajectories

In this paper, we firstly generalize the Brunn–Minkowski type inequality for Ekeland–Hofer–Zehnder symplectic capacity of bounded convex domains established by Artstein-Avidan–Ostrover in 2008 to extended symplectic capacities of bounded convex domains constructed by authors based on a class of Hamiltonian non-periodic boundary value problems recently. Then we introduce a class of non-periodic billiards in convex domains, and for them we prove some corresponding results to those for periodic billiards in convex domains obtained by Artstein-Avidan–Ostrover in 2012.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信