{"title":"轴对称Navier-Stokes方程涡度的先验界的注释","authors":"Zujin Zhang, Chenxuan Tong","doi":"10.21136/AM.2021.0344-20","DOIUrl":null,"url":null,"abstract":"<div><p>We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that </p><div><div><span>$$\\left| {{\\omega ^r}(x,t)} \\right| + \\left| {{\\omega ^z}(r,t)} \\right| \\leqslant {C \\over {{r^{10}}}},\\,\\,\\,\\,\\,0 < r \\leqslant {1 \\over 2}.$$</span></div></div><p> By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing <i>ω</i><sup><i>r</i></sup>, <i>ω</i><sup><i>z</i></sup> and <i>ω</i><sup><i>θ</i></sup>/<i>r</i> on different hollow cylinders, we are able to improve it and obtain </p><div><div><span>$$\\left| {{\\omega ^r}(x,t)} \\right| + \\left| {{\\omega ^z}(r,t)} \\right| \\leqslant {{C\\left| {\\ln \\,r} \\right|} \\over {{r^{17/2}}}},\\,\\,\\,\\,\\,0 < r \\leqslant {1 \\over 2}.$$</span></div></div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.21136/AM.2021.0344-20.pdf","citationCount":"0","resultStr":"{\"title\":\"Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations\",\"authors\":\"Zujin Zhang, Chenxuan Tong\",\"doi\":\"10.21136/AM.2021.0344-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that </p><div><div><span>$$\\\\left| {{\\\\omega ^r}(x,t)} \\\\right| + \\\\left| {{\\\\omega ^z}(r,t)} \\\\right| \\\\leqslant {C \\\\over {{r^{10}}}},\\\\,\\\\,\\\\,\\\\,\\\\,0 < r \\\\leqslant {1 \\\\over 2}.$$</span></div></div><p> By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing <i>ω</i><sup><i>r</i></sup>, <i>ω</i><sup><i>z</i></sup> and <i>ω</i><sup><i>θ</i></sup>/<i>r</i> on different hollow cylinders, we are able to improve it and obtain </p><div><div><span>$$\\\\left| {{\\\\omega ^r}(x,t)} \\\\right| + \\\\left| {{\\\\omega ^z}(r,t)} \\\\right| \\\\leqslant {{C\\\\left| {\\\\ln \\\\,r} \\\\right|} \\\\over {{r^{17/2}}}},\\\\,\\\\,\\\\,\\\\,\\\\,0 < r \\\\leqslant {1 \\\\over 2}.$$</span></div></div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.21136/AM.2021.0344-20.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2021.0344-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2021.0344-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing ωr, ωz and ωθ/r on different hollow cylinders, we are able to improve it and obtain