交换环上代数的正态性及teichmller类。2

IF 0.5 4区 数学
Johannes Huebschmann
{"title":"交换环上代数的正态性及teichmller类。2","authors":"Johannes Huebschmann","doi":"10.1007/s40062-017-0174-2","DOIUrl":null,"url":null,"abstract":"<p>Using a suitable notion of normal Galois extension of commutative rings, we develop the relative theory of the generalized Teichmüller cocycle map. We interpret the theory in terms of the Deuring embedding problem, construct an eight term exact sequence involving the relative Teichmüller cocycle map and suitable relative versions of generalized Brauer groups and compare the theory with the group cohomology eight term exact sequence involving crossed pairs. We also develop somewhat more sophisticated versions of the ordinary, equivariant and crossed relative Brauer groups and show that the resulting exact sequences behave better with regard to comparison of the theory with group cohomology than do the naive notions of the generalized relative Brauer groups.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"13 1","pages":"71 - 125"},"PeriodicalIF":0.5000,"publicationDate":"2017-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-017-0174-2","citationCount":"5","resultStr":"{\"title\":\"Normality of algebras over commutative rings and the Teichmüller class. II.\",\"authors\":\"Johannes Huebschmann\",\"doi\":\"10.1007/s40062-017-0174-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using a suitable notion of normal Galois extension of commutative rings, we develop the relative theory of the generalized Teichmüller cocycle map. We interpret the theory in terms of the Deuring embedding problem, construct an eight term exact sequence involving the relative Teichmüller cocycle map and suitable relative versions of generalized Brauer groups and compare the theory with the group cohomology eight term exact sequence involving crossed pairs. We also develop somewhat more sophisticated versions of the ordinary, equivariant and crossed relative Brauer groups and show that the resulting exact sequences behave better with regard to comparison of the theory with group cohomology than do the naive notions of the generalized relative Brauer groups.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"13 1\",\"pages\":\"71 - 125\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-017-0174-2\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-017-0174-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-017-0174-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用交换环的正规伽罗瓦扩展的适当概念,给出了广义teichm ller环映射的相关理论。我们从Deuring嵌入问题的角度解释了这一理论,构造了一个包含相对teichm循环映射和合适的广义Brauer群的相对版本的八项精确序列,并将该理论与包含交叉对的群上同调八项精确序列进行了比较。我们还发展了普通的、等变的和交叉的相对Brauer群的一些更复杂的版本,并表明所得到的精确序列在与群上同调的理论比较中比广义相对Brauer群的朴素概念表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normality of algebras over commutative rings and the Teichmüller class. II.

Using a suitable notion of normal Galois extension of commutative rings, we develop the relative theory of the generalized Teichmüller cocycle map. We interpret the theory in terms of the Deuring embedding problem, construct an eight term exact sequence involving the relative Teichmüller cocycle map and suitable relative versions of generalized Brauer groups and compare the theory with the group cohomology eight term exact sequence involving crossed pairs. We also develop somewhat more sophisticated versions of the ordinary, equivariant and crossed relative Brauer groups and show that the resulting exact sequences behave better with regard to comparison of the theory with group cohomology than do the naive notions of the generalized relative Brauer groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信