将向量值度量组合为标量度量的框架:用于数据比较的应用

Pub Date : 2021-11-22 DOI:10.21136/AM.2021.0090-21
Gemma Piella
{"title":"将向量值度量组合为标量度量的框架:用于数据比较的应用","authors":"Gemma Piella","doi":"10.21136/AM.2021.0090-21","DOIUrl":null,"url":null,"abstract":"<div><p>Distance metrics are at the core of many processing and machine learning algorithms. In many contexts, it is useful to compute the distance between data using multiple criteria. This naturally leads to consider vector-valued metrics, in which the distance is no longer a real positive number but a vector. In this paper, we propose a principled way to combine several metrics into either a scalar-valued or vector-valued metric. We illustrate our framework by reformulating the popular structural similarity (SSIM) index and a simple case of the Wasserstein distance used for optimal transport.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework to combine vector-valued metrics into a scalar-metric: Application to data comparison\",\"authors\":\"Gemma Piella\",\"doi\":\"10.21136/AM.2021.0090-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Distance metrics are at the core of many processing and machine learning algorithms. In many contexts, it is useful to compute the distance between data using multiple criteria. This naturally leads to consider vector-valued metrics, in which the distance is no longer a real positive number but a vector. In this paper, we propose a principled way to combine several metrics into either a scalar-valued or vector-valued metric. We illustrate our framework by reformulating the popular structural similarity (SSIM) index and a simple case of the Wasserstein distance used for optimal transport.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2021.0090-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2021.0090-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

距离度量是许多处理和机器学习算法的核心。在许多情况下,使用多个标准计算数据之间的距离是有用的。这自然导致考虑向量值度量,其中距离不再是实数,而是向量。在本文中,我们提出了一种原则性的方法,将几个度量组合成标量值或向量值度量。我们通过重新制定流行结构相似性(SSIM)指数和用于最优运输的Wasserstein距离的一个简单例子来说明我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A framework to combine vector-valued metrics into a scalar-metric: Application to data comparison

Distance metrics are at the core of many processing and machine learning algorithms. In many contexts, it is useful to compute the distance between data using multiple criteria. This naturally leads to consider vector-valued metrics, in which the distance is no longer a real positive number but a vector. In this paper, we propose a principled way to combine several metrics into either a scalar-valued or vector-valued metric. We illustrate our framework by reformulating the popular structural similarity (SSIM) index and a simple case of the Wasserstein distance used for optimal transport.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信