高等澳洲人的缺陷与\(\varvec{n}\) -膨化分类的分类子结构

IF 0.6 4区 数学 Q3 MATHEMATICS
Jiangsheng Hu, Yajun Ma, Dongdong Zhang, Panyue Zhou
{"title":"高等澳洲人的缺陷与\\(\\varvec{n}\\) -膨化分类的分类子结构","authors":"Jiangsheng Hu,&nbsp;Yajun Ma,&nbsp;Dongdong Zhang,&nbsp;Panyue Zhou","doi":"10.1007/s10485-023-09713-4","DOIUrl":null,"url":null,"abstract":"<div><p>Herschend–Liu–Nakaoka introduced the notion of an <i>n</i>-exangulated category. It is not only a higher dimensional analogue of extriangulated categories defined by Nakaoka–Palu, but also gives a simultaneous generalization of <i>n</i>-exact categories and <span>\\((n+2)\\)</span>-angulated categories. In this article, we give an <i>n</i>-exangulated version of Auslander’s defect and Auslander–Reiten duality formula. Moreover, we also give a classification of substructures (=closed subbifunctors) of a given skeletally small <i>n</i>-exangulated category by using the category of defects.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Auslander’s defect and classifying substructures of \\\\(\\\\varvec{n}\\\\)-exangulated categories\",\"authors\":\"Jiangsheng Hu,&nbsp;Yajun Ma,&nbsp;Dongdong Zhang,&nbsp;Panyue Zhou\",\"doi\":\"10.1007/s10485-023-09713-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herschend–Liu–Nakaoka introduced the notion of an <i>n</i>-exangulated category. It is not only a higher dimensional analogue of extriangulated categories defined by Nakaoka–Palu, but also gives a simultaneous generalization of <i>n</i>-exact categories and <span>\\\\((n+2)\\\\)</span>-angulated categories. In this article, we give an <i>n</i>-exangulated version of Auslander’s defect and Auslander–Reiten duality formula. Moreover, we also give a classification of substructures (=closed subbifunctors) of a given skeletally small <i>n</i>-exangulated category by using the category of defects.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-023-09713-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09713-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Herschend–Liu–Nakaoka引入了n-自律范畴的概念。它不仅是Nakaoka–Palu定义的外向范畴的高维类似物,而且给出了n-精确范畴和\((n+2)\)角度范畴的同时推广。在本文中,我们给出了Auslander缺陷和Auslander-Reiten对偶公式的一个正己烷化版本。此外,我们还利用缺陷的类别,给出了给定骨架小n-正则化类别的子结构(=闭子滤波器)的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher Auslander’s defect and classifying substructures of \(\varvec{n}\)-exangulated categories

Herschend–Liu–Nakaoka introduced the notion of an n-exangulated category. It is not only a higher dimensional analogue of extriangulated categories defined by Nakaoka–Palu, but also gives a simultaneous generalization of n-exact categories and \((n+2)\)-angulated categories. In this article, we give an n-exangulated version of Auslander’s defect and Auslander–Reiten duality formula. Moreover, we also give a classification of substructures (=closed subbifunctors) of a given skeletally small n-exangulated category by using the category of defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信