苏斯林树及其属枝的刚性

IF 0.3 4区 数学 Q1 Arts and Humanities
Hossein Lamei Ramandi
{"title":"苏斯林树及其属枝的刚性","authors":"Hossein Lamei Ramandi","doi":"10.1007/s00153-022-00843-5","DOIUrl":null,"url":null,"abstract":"<div><p>We show it is consistent that there is a Souslin tree <i>S</i> such that after forcing with <i>S</i>, <i>S</i> is Kurepa and for all clubs <span>\\(C \\subset \\omega _1\\)</span>, <span>\\(S\\upharpoonright C\\)</span> is rigid. This answers the questions in Fuchs (Arch Math Logic 52(1–2):47–66, 2013). Moreover, we show it is consistent with <span>\\(\\diamondsuit \\)</span> that for every Souslin tree <i>T</i> there is a dense <span>\\(X \\subseteq T\\)</span> which does not contain a copy of <i>T</i>. This is related to a question due to Baumgartner in Baumgartner (Ordered sets (Banff, Alta., 1981), volume 83 of NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., Reidel, Dordrecht-Boston, pp 239–277, 1982).</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-022-00843-5.pdf","citationCount":"2","resultStr":"{\"title\":\"On the rigidity of Souslin trees and their generic branches\",\"authors\":\"Hossein Lamei Ramandi\",\"doi\":\"10.1007/s00153-022-00843-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show it is consistent that there is a Souslin tree <i>S</i> such that after forcing with <i>S</i>, <i>S</i> is Kurepa and for all clubs <span>\\\\(C \\\\subset \\\\omega _1\\\\)</span>, <span>\\\\(S\\\\upharpoonright C\\\\)</span> is rigid. This answers the questions in Fuchs (Arch Math Logic 52(1–2):47–66, 2013). Moreover, we show it is consistent with <span>\\\\(\\\\diamondsuit \\\\)</span> that for every Souslin tree <i>T</i> there is a dense <span>\\\\(X \\\\subseteq T\\\\)</span> which does not contain a copy of <i>T</i>. This is related to a question due to Baumgartner in Baumgartner (Ordered sets (Banff, Alta., 1981), volume 83 of NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., Reidel, Dordrecht-Boston, pp 239–277, 1982).</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00153-022-00843-5.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-022-00843-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-022-00843-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2

摘要

我们证明有一个苏斯林树S是一致的,在用S强迫之后,S是Kurepa,对于所有俱乐部\(C \subset \omega _1\), \(S\upharpoonright C\)是刚性的。这回答了Fuchs (Arch Math Logic 52(1-2): 47-66, 2013)中的问题。此外,我们证明了与\(\diamondsuit \)一致的是,对于每个苏斯林树T,存在一个不包含T副本的稠密\(X \subseteq T\)。这与Baumgartner (Ordered sets (Banff, Alta)中的Baumgartner(有序集)问题有关。(1981年),《北约高级研究研究所》第83卷。C:数学。物理。科学。, Reidel, Dordrecht-Boston, pp 239-277, 1982)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the rigidity of Souslin trees and their generic branches

We show it is consistent that there is a Souslin tree S such that after forcing with S, S is Kurepa and for all clubs \(C \subset \omega _1\), \(S\upharpoonright C\) is rigid. This answers the questions in Fuchs (Arch Math Logic 52(1–2):47–66, 2013). Moreover, we show it is consistent with \(\diamondsuit \) that for every Souslin tree T there is a dense \(X \subseteq T\) which does not contain a copy of T. This is related to a question due to Baumgartner in Baumgartner (Ordered sets (Banff, Alta., 1981), volume 83 of NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., Reidel, Dordrecht-Boston, pp 239–277, 1982).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信