Rothe方法在非局部边界条件抛物型反问题中的应用

Pub Date : 2021-10-19 DOI:10.21136/AM.2021.0029-21
Yong-Hyok Jo, Myong-Hwan Ri
{"title":"Rothe方法在非局部边界条件抛物型反问题中的应用","authors":"Yong-Hyok Jo,&nbsp;Myong-Hwan Ri","doi":"10.21136/AM.2021.0029-21","DOIUrl":null,"url":null,"abstract":"<div><p>We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value <i>u</i><sub>0</sub> ∈ <i>H</i><sup>1</sup>(Ω) is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when <i>u</i><sub>0</sub> ∈ <i>L</i><sup>2</sup>(Ω) and the integral kernel in the nonlocal boundary condition is symmetric.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Rothe’s Method to a Parabolic Inverse Problem with Nonlocal Boundary Condition\",\"authors\":\"Yong-Hyok Jo,&nbsp;Myong-Hwan Ri\",\"doi\":\"10.21136/AM.2021.0029-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value <i>u</i><sub>0</sub> ∈ <i>H</i><sup>1</sup>(Ω) is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when <i>u</i><sub>0</sub> ∈ <i>L</i><sup>2</sup>(Ω) and the integral kernel in the nonlocal boundary condition is symmetric.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2021.0029-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2021.0029-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了具有非局部边界条件的半线性抛物型方程中确定纯时变源的一个反问题。利用Rothe时间离散化方法,给出了初值为u0∈H1(Ω)的问题的解的近似格式和适定性。对于u0∈L2(Ω)且非局部边界条件下的积分核是对称的问题,利用Rothe方法构造了进一步的逼近格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Application of Rothe’s Method to a Parabolic Inverse Problem with Nonlocal Boundary Condition

We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value u0H1(Ω) is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when u0L2(Ω) and the integral kernel in the nonlocal boundary condition is symmetric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信