对看似不相关的线性混合模型中预测因子比较的几点评述

Pub Date : 2021-10-18 DOI:10.21136/AM.2021.0366-20
Nesrin Güler, Melek Eriş Büyükkaya
{"title":"对看似不相关的线性混合模型中预测因子比较的几点评述","authors":"Nesrin Güler,&nbsp;Melek Eriş Büyükkaya","doi":"10.21136/AM.2021.0366-20","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a comparison problem of predictors in the context of linear mixed models. In particular, we assume a set of <i>m</i> different seemingly unrelated linear mixed models (SULMMs) allowing correlations among random vectors across the models. Our aim is to establish a variety of equalities and inequalities for comparing covariance matrices of the best linear unbiased predictors (BLUPs) of joint unknown vectors under SULMMs and their combined model. We use the matrix rank and inertia method for establishing equalities and inequalities. We also give an extensive approach for seemingly unrelated regression models (SURMs) by applying the results obtained for SULMMs to SURMs.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.21136/AM.2021.0366-20.pdf","citationCount":"2","resultStr":"{\"title\":\"Some remarks on comparison of predictors in seemingly unrelated linear mixed models\",\"authors\":\"Nesrin Güler,&nbsp;Melek Eriş Büyükkaya\",\"doi\":\"10.21136/AM.2021.0366-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a comparison problem of predictors in the context of linear mixed models. In particular, we assume a set of <i>m</i> different seemingly unrelated linear mixed models (SULMMs) allowing correlations among random vectors across the models. Our aim is to establish a variety of equalities and inequalities for comparing covariance matrices of the best linear unbiased predictors (BLUPs) of joint unknown vectors under SULMMs and their combined model. We use the matrix rank and inertia method for establishing equalities and inequalities. We also give an extensive approach for seemingly unrelated regression models (SURMs) by applying the results obtained for SULMMs to SURMs.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.21136/AM.2021.0366-20.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2021.0366-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2021.0366-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们考虑了线性混合模型中预测因子的比较问题。特别地,我们假设一组m个不同的看似不相关的线性混合模型(SULMM),允许模型中随机向量之间的相关性。我们的目的是建立各种等式和不等式,用于比较SULMM及其组合模型下联合未知向量的最佳线性无偏预测因子(BLUP)的协方差矩阵。我们使用矩阵秩和惯性方法来建立等式和不等式。我们还通过将SULMM获得的结果应用于看似不相关的回归模型(SURM),给出了一种广泛的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some remarks on comparison of predictors in seemingly unrelated linear mixed models

In this paper, we consider a comparison problem of predictors in the context of linear mixed models. In particular, we assume a set of m different seemingly unrelated linear mixed models (SULMMs) allowing correlations among random vectors across the models. Our aim is to establish a variety of equalities and inequalities for comparing covariance matrices of the best linear unbiased predictors (BLUPs) of joint unknown vectors under SULMMs and their combined model. We use the matrix rank and inertia method for establishing equalities and inequalities. We also give an extensive approach for seemingly unrelated regression models (SURMs) by applying the results obtained for SULMMs to SURMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信