对数摄动模型的Riemann解的集中现象

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Shiwei Li
{"title":"对数摄动模型的Riemann解的集中现象","authors":"Shiwei Li","doi":"10.1007/s10440-023-00615-0","DOIUrl":null,"url":null,"abstract":"<div><p>Introducing a logarithmic pressure, we analyze the phenomenon of concentration and the formation of delta-shocks for the generalized Chaplygin gas dynamics. We first solve the Riemann problem for the logarithmic perturbed model and construct the solutions with four kinds of structures <span>\\(R_{1}+R_{2}\\)</span>, <span>\\(R_{1}+S_{2}\\)</span>, <span>\\(S_{1}+R_{2}\\)</span> and <span>\\(S_{1}+S_{2}\\)</span>. Then it is shown that when the logarithmic pressure vanishes, the limits of the Riemann solutions for the logarithmic perturbed model are just these of the generalized Chaplygin gas dynamics. In particular, when the initial data satisfy some certain conditions, the <span>\\(S_{1}+S_{2}\\)</span> solution of the logarithmic perturbed model tends to the delta-shock solution of the generalized Chaplygin gas dynamics. Finally, some numerical results exhibit the process of formation of delta-shocks.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"188 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-023-00615-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Concentration Phenomena of Riemann Solutions to a Logarithmic Perturbed Model\",\"authors\":\"Shiwei Li\",\"doi\":\"10.1007/s10440-023-00615-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Introducing a logarithmic pressure, we analyze the phenomenon of concentration and the formation of delta-shocks for the generalized Chaplygin gas dynamics. We first solve the Riemann problem for the logarithmic perturbed model and construct the solutions with four kinds of structures <span>\\\\(R_{1}+R_{2}\\\\)</span>, <span>\\\\(R_{1}+S_{2}\\\\)</span>, <span>\\\\(S_{1}+R_{2}\\\\)</span> and <span>\\\\(S_{1}+S_{2}\\\\)</span>. Then it is shown that when the logarithmic pressure vanishes, the limits of the Riemann solutions for the logarithmic perturbed model are just these of the generalized Chaplygin gas dynamics. In particular, when the initial data satisfy some certain conditions, the <span>\\\\(S_{1}+S_{2}\\\\)</span> solution of the logarithmic perturbed model tends to the delta-shock solution of the generalized Chaplygin gas dynamics. Finally, some numerical results exhibit the process of formation of delta-shocks.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10440-023-00615-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-023-00615-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00615-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

引入对数压力,我们分析了广义Chaplygin气体动力学的集中现象和三角洲冲击的形成。我们首先求解对数扰动模型的Riemann问题,并构造了具有四种结构的解:(R_{1}+R_{2}\)、(R_{1}+S_{2})、(S_{1}/R_{2})和(S_{1}+S_{2}\)。结果表明,当对数压力消失时,对数扰动模型的黎曼解的极限正是广义Chaplygin气体动力学的极限。特别地,当初始数据满足某些条件时,对数扰动模型的\(S_{1}+S_{2}\)解趋向于广义Chaplygin气体动力学的Δ激波解。最后,一些数值结果显示了三角洲冲击的形成过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Concentration Phenomena of Riemann Solutions to a Logarithmic Perturbed Model

Concentration Phenomena of Riemann Solutions to a Logarithmic Perturbed Model

Introducing a logarithmic pressure, we analyze the phenomenon of concentration and the formation of delta-shocks for the generalized Chaplygin gas dynamics. We first solve the Riemann problem for the logarithmic perturbed model and construct the solutions with four kinds of structures \(R_{1}+R_{2}\), \(R_{1}+S_{2}\), \(S_{1}+R_{2}\) and \(S_{1}+S_{2}\). Then it is shown that when the logarithmic pressure vanishes, the limits of the Riemann solutions for the logarithmic perturbed model are just these of the generalized Chaplygin gas dynamics. In particular, when the initial data satisfy some certain conditions, the \(S_{1}+S_{2}\) solution of the logarithmic perturbed model tends to the delta-shock solution of the generalized Chaplygin gas dynamics. Finally, some numerical results exhibit the process of formation of delta-shocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信