分数阶p-拉普拉斯Schrödinger系统正解的对称性和单调性

IF 1 4区 数学
Ling-wei Ma, Zhen-qiu Zhang
{"title":"分数阶p-拉普拉斯Schrödinger系统正解的对称性和单调性","authors":"Ling-wei Ma,&nbsp;Zhen-qiu Zhang","doi":"10.1007/s11766-022-4263-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional <i>p</i>-Laplacian systems. By virtue of this method, we investigate the qualitative properties of positive solutions for the following Schrödinger system with fractional <i>p</i>-Laplacian\n</p><div><div><span>$$\\left\\{ {\\matrix{{( - \\Delta )_p^su + a{u^{p - 1}} = f(u,v),} \\cr {( - \\Delta )_p^tv + b{v^{p - 1}} = g(u,v),} \\cr } } \\right.$$</span></div></div><p>where 0 &lt; <i>s, t</i> &lt; 1 and 2 &lt; <i>p</i> &lt; ∞. We obtain the radial symmetry in the unit ball or the whole space ℝ<sup><i>N</i></sup> (<i>N</i> ≥ 2), the monotonicity in the parabolic domain and the nonexistence on the half space for positive solutions to the above system under some suitable conditions on <i>f</i> and <i>g</i>, respectively.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"37 1","pages":"52 - 72"},"PeriodicalIF":1.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11766-022-4263-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Symmetry and monotonicity of positive solutions to Schrödinger systems with fractional p-Laplacians\",\"authors\":\"Ling-wei Ma,&nbsp;Zhen-qiu Zhang\",\"doi\":\"10.1007/s11766-022-4263-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional <i>p</i>-Laplacian systems. By virtue of this method, we investigate the qualitative properties of positive solutions for the following Schrödinger system with fractional <i>p</i>-Laplacian\\n</p><div><div><span>$$\\\\left\\\\{ {\\\\matrix{{( - \\\\Delta )_p^su + a{u^{p - 1}} = f(u,v),} \\\\cr {( - \\\\Delta )_p^tv + b{v^{p - 1}} = g(u,v),} \\\\cr } } \\\\right.$$</span></div></div><p>where 0 &lt; <i>s, t</i> &lt; 1 and 2 &lt; <i>p</i> &lt; ∞. We obtain the radial symmetry in the unit ball or the whole space ℝ<sup><i>N</i></sup> (<i>N</i> ≥ 2), the monotonicity in the parabolic domain and the nonexistence on the half space for positive solutions to the above system under some suitable conditions on <i>f</i> and <i>g</i>, respectively.</p></div>\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":\"37 1\",\"pages\":\"52 - 72\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11766-022-4263-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-022-4263-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-022-4263-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先建立了窄域原理和无穷大衰变定理,以推广一般分式p-拉普拉斯系统的移动平面的直接方法。利用这种方法,我们研究了分数阶p-Laplacian$$\left矩阵{(-\Delta)_p^su+a{u^{p-1}}=f(u,v),{cr{(/\Delta)_pr^tv+b{v^{p-1}}=g(u,v),{cr}}\right的薛定谔系统正解的定性性质$$其中0<;s、 t<;1和2<;p<;∞。我们得到了单位球或整个空间中的径向对称性ℝN(N≥2),分别在f和g上的一些适当条件下,抛物域上的单调性和半空间上正解的不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry and monotonicity of positive solutions to Schrödinger systems with fractional p-Laplacians

In this paper, we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional p-Laplacian systems. By virtue of this method, we investigate the qualitative properties of positive solutions for the following Schrödinger system with fractional p-Laplacian

$$\left\{ {\matrix{{( - \Delta )_p^su + a{u^{p - 1}} = f(u,v),} \cr {( - \Delta )_p^tv + b{v^{p - 1}} = g(u,v),} \cr } } \right.$$

where 0 < s, t < 1 and 2 < p < ∞. We obtain the radial symmetry in the unit ball or the whole space ℝN (N ≥ 2), the monotonicity in the parabolic domain and the nonexistence on the half space for positive solutions to the above system under some suitable conditions on f and g, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信