S2型Fano品种的周氏环

IF 0.4 4区 数学 Q4 MATHEMATICS
Robert Laterveer
{"title":"S2型Fano品种的周氏环","authors":"Robert Laterveer","doi":"10.1007/s12188-020-00218-8","DOIUrl":null,"url":null,"abstract":"<div><p>We show that certain Fano eightfolds (obtained as hyperplane sections of an orthogonal Grassmannian, and studied by Ito–Miura–Okawa–Ueda and by Fatighenti–Mongardi) have a multiplicative Chow–Künneth decomposition. As a corollary, the Chow ring of these eightfolds behaves like that of K3 surfaces.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-020-00218-8","citationCount":"15","resultStr":"{\"title\":\"On the Chow ring of Fano varieties of type S2\",\"authors\":\"Robert Laterveer\",\"doi\":\"10.1007/s12188-020-00218-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that certain Fano eightfolds (obtained as hyperplane sections of an orthogonal Grassmannian, and studied by Ito–Miura–Okawa–Ueda and by Fatighenti–Mongardi) have a multiplicative Chow–Künneth decomposition. As a corollary, the Chow ring of these eightfolds behaves like that of K3 surfaces.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-020-00218-8\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-020-00218-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-020-00218-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

我们证明了某些Fano八重(作为正交Grassmann的超平面截面获得,由Ito–Miura–Okawa–Ueda和Fatighenti–Mongardi研究)具有乘法Chow–Künneth分解。作为推论,这八重的Chow环的行为类似于K3曲面的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Chow ring of Fano varieties of type S2

We show that certain Fano eightfolds (obtained as hyperplane sections of an orthogonal Grassmannian, and studied by Ito–Miura–Okawa–Ueda and by Fatighenti–Mongardi) have a multiplicative Chow–Künneth decomposition. As a corollary, the Chow ring of these eightfolds behaves like that of K3 surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信