由p进hurwitz型欧拉zeta函数满足的无限阶线性微分方程

IF 0.4 4区 数学 Q4 MATHEMATICS
Su Hu, Min-Soo Kim
{"title":"由p进hurwitz型欧拉zeta函数满足的无限阶线性微分方程","authors":"Su Hu,&nbsp;Min-Soo Kim","doi":"10.1007/s12188-021-00234-2","DOIUrl":null,"url":null,"abstract":"<div><p>In 1900, at the international congress of mathematicians, Hilbert claimed that the Riemann zeta function <span>\\(\\zeta (s)\\)</span> is not the solution of any algebraic ordinary differential equations on its region of analyticity. In 2015, Van Gorder (J Number Theory 147:778–788, 2015) considered the question of whether <span>\\(\\zeta (s)\\)</span> satisfies a non-algebraic differential equation and showed that it <i>formally</i> satisfies an infinite order linear differential equation. Recently, Prado and Klinger-Logan (J Number Theory 217:422–442, 2020) extended Van Gorder’s result to show that the Hurwitz zeta function <span>\\(\\zeta (s,a)\\)</span> is also <i>formally</i> satisfies a similar differential equation </p><div><div><span>$$\\begin{aligned} T\\left[ \\zeta (s,a) - \\frac{1}{a^s}\\right] = \\frac{1}{(s-1)a^{s-1}}. \\end{aligned}$$</span></div></div><p>But unfortunately in the same paper they proved that the operator <i>T</i> applied to Hurwitz zeta function <span>\\(\\zeta (s,a)\\)</span> does not converge at any point in the complex plane <span>\\({\\mathbb {C}}\\)</span>. In this paper, by defining <span>\\(T_{p}^{a}\\)</span>, a <i>p</i>-adic analogue of Van Gorder’s operator <i>T</i>,  we establish an analogue of Prado and Klinger-Logan’s differential equation satisfied by <span>\\(\\zeta _{p,E}(s,a)\\)</span> which is the <i>p</i>-adic analogue of the Hurwitz-type Euler zeta functions </p><div><div><span>$$\\begin{aligned} \\zeta _E(s,a)=\\sum _{n=0}^\\infty \\frac{(-1)^n}{(n+a)^s}. \\end{aligned}$$</span></div></div><p>In contrast with the complex case, due to the non-archimedean property, the operator <span>\\(T_{p}^{a}\\)</span> applied to the <i>p</i>-adic Hurwitz-type Euler zeta function <span>\\(\\zeta _{p,E}(s,a)\\)</span> is convergent <i>p</i>-adically in the area of <span>\\(s\\in {\\mathbb {Z}}_{p}\\)</span> with <span>\\(s\\ne 1\\)</span> and <span>\\(a\\in K\\)</span> with <span>\\(|a|_{p}&gt;1,\\)</span> where <i>K</i> is any finite extension of <span>\\({\\mathbb {Q}}_{p}\\)</span> with ramification index over <span>\\({\\mathbb {Q}}_{p}\\)</span> less than <span>\\(p-1.\\)</span></p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"91 1","pages":"117 - 135"},"PeriodicalIF":0.4000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-021-00234-2","citationCount":"1","resultStr":"{\"title\":\"Infinite order linear differential equation satisfied by p-adic Hurwitz-type Euler zeta functions\",\"authors\":\"Su Hu,&nbsp;Min-Soo Kim\",\"doi\":\"10.1007/s12188-021-00234-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1900, at the international congress of mathematicians, Hilbert claimed that the Riemann zeta function <span>\\\\(\\\\zeta (s)\\\\)</span> is not the solution of any algebraic ordinary differential equations on its region of analyticity. In 2015, Van Gorder (J Number Theory 147:778–788, 2015) considered the question of whether <span>\\\\(\\\\zeta (s)\\\\)</span> satisfies a non-algebraic differential equation and showed that it <i>formally</i> satisfies an infinite order linear differential equation. Recently, Prado and Klinger-Logan (J Number Theory 217:422–442, 2020) extended Van Gorder’s result to show that the Hurwitz zeta function <span>\\\\(\\\\zeta (s,a)\\\\)</span> is also <i>formally</i> satisfies a similar differential equation </p><div><div><span>$$\\\\begin{aligned} T\\\\left[ \\\\zeta (s,a) - \\\\frac{1}{a^s}\\\\right] = \\\\frac{1}{(s-1)a^{s-1}}. \\\\end{aligned}$$</span></div></div><p>But unfortunately in the same paper they proved that the operator <i>T</i> applied to Hurwitz zeta function <span>\\\\(\\\\zeta (s,a)\\\\)</span> does not converge at any point in the complex plane <span>\\\\({\\\\mathbb {C}}\\\\)</span>. In this paper, by defining <span>\\\\(T_{p}^{a}\\\\)</span>, a <i>p</i>-adic analogue of Van Gorder’s operator <i>T</i>,  we establish an analogue of Prado and Klinger-Logan’s differential equation satisfied by <span>\\\\(\\\\zeta _{p,E}(s,a)\\\\)</span> which is the <i>p</i>-adic analogue of the Hurwitz-type Euler zeta functions </p><div><div><span>$$\\\\begin{aligned} \\\\zeta _E(s,a)=\\\\sum _{n=0}^\\\\infty \\\\frac{(-1)^n}{(n+a)^s}. \\\\end{aligned}$$</span></div></div><p>In contrast with the complex case, due to the non-archimedean property, the operator <span>\\\\(T_{p}^{a}\\\\)</span> applied to the <i>p</i>-adic Hurwitz-type Euler zeta function <span>\\\\(\\\\zeta _{p,E}(s,a)\\\\)</span> is convergent <i>p</i>-adically in the area of <span>\\\\(s\\\\in {\\\\mathbb {Z}}_{p}\\\\)</span> with <span>\\\\(s\\\\ne 1\\\\)</span> and <span>\\\\(a\\\\in K\\\\)</span> with <span>\\\\(|a|_{p}&gt;1,\\\\)</span> where <i>K</i> is any finite extension of <span>\\\\({\\\\mathbb {Q}}_{p}\\\\)</span> with ramification index over <span>\\\\({\\\\mathbb {Q}}_{p}\\\\)</span> less than <span>\\\\(p-1.\\\\)</span></p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"91 1\",\"pages\":\"117 - 135\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-021-00234-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-021-00234-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-021-00234-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

1900年,在国际数学家大会上,希尔伯特声称黎曼ζ函数(ζ(s))不是任何代数常微分方程在其分析域上的解。2015年,Van Gorder(J数论147:778–7882015)考虑了\(\zeta(s)\)是否满足非代数微分方程的问题,并证明它形式上满足无限阶线性微分方程。最近,Prado和Klinger-Logan(J数论217:422–4422020)扩展了Van Gorder的结果,证明Hurwitz zeta函数\(\zeta(s,a)\)也形式上满足类似的微分方程$$\begin{aligned}T\left[\zeta(s,a)-\frac{1}。\end{aligned}$$但不幸的是,在同一篇论文中,他们证明了应用于Hurwitz zeta函数\(\zeta(s,a)\)的算子T不收敛于复平面\({\mathbb{C}})中的任何点。本文通过定义Van Gorder算子T的p-adic类似物\(T_{p}^{a}),我们建立了Prado和Klinger-Logan微分方程的一个类似物,该方程由\(ζ。\end{aligned}$$与复杂的情况相比,由于非archimedean属性,应用于p-adic Hurwitz型Eulerζ函数的算子\(T_{p}^{a})\(ζa\p,E}(s,a)\)在\(s\in{\mathbb{Z}}_{p}\)与\(s\ne 1\)和\(a\in K\)与\(|a|_{p}>;1,\)的区域内是p-adic收敛的,其中K是\({\math bb{Q})与\ p}\)小于\(p-1.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite order linear differential equation satisfied by p-adic Hurwitz-type Euler zeta functions

In 1900, at the international congress of mathematicians, Hilbert claimed that the Riemann zeta function \(\zeta (s)\) is not the solution of any algebraic ordinary differential equations on its region of analyticity. In 2015, Van Gorder (J Number Theory 147:778–788, 2015) considered the question of whether \(\zeta (s)\) satisfies a non-algebraic differential equation and showed that it formally satisfies an infinite order linear differential equation. Recently, Prado and Klinger-Logan (J Number Theory 217:422–442, 2020) extended Van Gorder’s result to show that the Hurwitz zeta function \(\zeta (s,a)\) is also formally satisfies a similar differential equation

$$\begin{aligned} T\left[ \zeta (s,a) - \frac{1}{a^s}\right] = \frac{1}{(s-1)a^{s-1}}. \end{aligned}$$

But unfortunately in the same paper they proved that the operator T applied to Hurwitz zeta function \(\zeta (s,a)\) does not converge at any point in the complex plane \({\mathbb {C}}\). In this paper, by defining \(T_{p}^{a}\), a p-adic analogue of Van Gorder’s operator T,  we establish an analogue of Prado and Klinger-Logan’s differential equation satisfied by \(\zeta _{p,E}(s,a)\) which is the p-adic analogue of the Hurwitz-type Euler zeta functions

$$\begin{aligned} \zeta _E(s,a)=\sum _{n=0}^\infty \frac{(-1)^n}{(n+a)^s}. \end{aligned}$$

In contrast with the complex case, due to the non-archimedean property, the operator \(T_{p}^{a}\) applied to the p-adic Hurwitz-type Euler zeta function \(\zeta _{p,E}(s,a)\) is convergent p-adically in the area of \(s\in {\mathbb {Z}}_{p}\) with \(s\ne 1\) and \(a\in K\) with \(|a|_{p}>1,\) where K is any finite extension of \({\mathbb {Q}}_{p}\) with ramification index over \({\mathbb {Q}}_{p}\) less than \(p-1.\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信