周期\(\mathrm{L}_{p}\)的有界性估计:在Navier-Stokes方程上的应用

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Thomas Eiter, Mads Kyed, Yoshihiro Shibata
{"title":"周期\\(\\mathrm{L}_{p}\\)的有界性估计:在Navier-Stokes方程上的应用","authors":"Thomas Eiter,&nbsp;Mads Kyed,&nbsp;Yoshihiro Shibata","doi":"10.1007/s10440-023-00612-3","DOIUrl":null,"url":null,"abstract":"<div><p>General evolution equations in Banach spaces are investigated. Based on an operator-valued version of de Leeuw’s transference principle, time-periodic <span>\\(\\mathrm {L}_{p}\\)</span> estimates of maximal regularity type are carried over from ℛ-bounds of the family of solution operators (ℛ-solvers) to the corresponding resolvent problems. With this method, existence of time-periodic solutions to the Navier-Stokes equations is shown for two configurations: in a periodically moving bounded domain and in an exterior domain, subject to prescribed time-periodic forcing and boundary data.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"188 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-023-00612-3.pdf","citationCount":"1","resultStr":"{\"title\":\"Periodic \\\\(\\\\mathrm{L}_{p}\\\\) Estimates by ℛ-Boundedness: Applications to the Navier-Stokes Equations\",\"authors\":\"Thomas Eiter,&nbsp;Mads Kyed,&nbsp;Yoshihiro Shibata\",\"doi\":\"10.1007/s10440-023-00612-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>General evolution equations in Banach spaces are investigated. Based on an operator-valued version of de Leeuw’s transference principle, time-periodic <span>\\\\(\\\\mathrm {L}_{p}\\\\)</span> estimates of maximal regularity type are carried over from ℛ-bounds of the family of solution operators (ℛ-solvers) to the corresponding resolvent problems. With this method, existence of time-periodic solutions to the Navier-Stokes equations is shown for two configurations: in a periodically moving bounded domain and in an exterior domain, subject to prescribed time-periodic forcing and boundary data.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10440-023-00612-3.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-023-00612-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00612-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

研究了Banach空间中的一般演化方程。基于de Leeuw转移原理的算子值版本,时间周期\(\mathrm{L}_{p} \)最大正则性类型的估计从ℛ-解算子族的界(ℛ-求解器)到相应的预解决问题。利用该方法,在两种配置下,Navier-Stokes方程的时间周期解的存在性得到了证明:在周期移动的有界域中和在外部域中,受规定的时间周期强迫和边界数据的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic \(\mathrm{L}_{p}\) Estimates by ℛ-Boundedness: Applications to the Navier-Stokes Equations

General evolution equations in Banach spaces are investigated. Based on an operator-valued version of de Leeuw’s transference principle, time-periodic \(\mathrm {L}_{p}\) estimates of maximal regularity type are carried over from ℛ-bounds of the family of solution operators (ℛ-solvers) to the corresponding resolvent problems. With this method, existence of time-periodic solutions to the Navier-Stokes equations is shown for two configurations: in a periodically moving bounded domain and in an exterior domain, subject to prescribed time-periodic forcing and boundary data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信