逆向数学和半单环

IF 0.3 4区 数学 Q1 Arts and Humanities
Huishan Wu
{"title":"逆向数学和半单环","authors":"Huishan Wu","doi":"10.1007/s00153-021-00812-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies various equivalent characterizations of left semisimple rings from the standpoint of reverse mathematics. We first show that <span>\\(\\mathrm ACA_{0}\\)</span> is equivalent to the statement that any left module over a left semisimple ring is semisimple over <span>\\(\\mathrm RCA_{0}\\)</span>. We then study characterizations of left semisimple rings in terms of projective modules as well as injective modules, and obtain the following results: (1) <span>\\(\\mathrm ACA_{0}\\)</span> is equivalent to the statement that any left module over a left semisimple ring is projective over <span>\\(\\mathrm RCA_{0}\\)</span>; (2) <span>\\(\\mathrm ACA_{0}\\)</span> is equivalent to the statement that any left module over a left semisimple ring is injective over <span>\\(\\mathrm RCA_{0}\\)</span>; (3) <span>\\(\\mathrm RCA_{0}\\)</span> proves the statement that if every cyclic left <i>R</i>-module is projective, then <i>R</i> is a left semisimple ring; (4) <span>\\(\\mathrm ACA_{0}\\)</span> proves the statement that if every cyclic left <i>R</i>-module is injective, then <i>R</i> is a left semisimple ring.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reverse mathematics and semisimple rings\",\"authors\":\"Huishan Wu\",\"doi\":\"10.1007/s00153-021-00812-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies various equivalent characterizations of left semisimple rings from the standpoint of reverse mathematics. We first show that <span>\\\\(\\\\mathrm ACA_{0}\\\\)</span> is equivalent to the statement that any left module over a left semisimple ring is semisimple over <span>\\\\(\\\\mathrm RCA_{0}\\\\)</span>. We then study characterizations of left semisimple rings in terms of projective modules as well as injective modules, and obtain the following results: (1) <span>\\\\(\\\\mathrm ACA_{0}\\\\)</span> is equivalent to the statement that any left module over a left semisimple ring is projective over <span>\\\\(\\\\mathrm RCA_{0}\\\\)</span>; (2) <span>\\\\(\\\\mathrm ACA_{0}\\\\)</span> is equivalent to the statement that any left module over a left semisimple ring is injective over <span>\\\\(\\\\mathrm RCA_{0}\\\\)</span>; (3) <span>\\\\(\\\\mathrm RCA_{0}\\\\)</span> proves the statement that if every cyclic left <i>R</i>-module is projective, then <i>R</i> is a left semisimple ring; (4) <span>\\\\(\\\\mathrm ACA_{0}\\\\)</span> proves the statement that if every cyclic left <i>R</i>-module is injective, then <i>R</i> is a left semisimple ring.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-021-00812-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-021-00812-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

本文从反数学的角度研究了左半单环的各种等价刻画。我们首先证明了\(\mathrm ACA_{0}\)等价于左半单环上的任何左模在\(\math rm RCA_{0}\)上是半单的声明。然后,我们用投射模和内射模研究了左半单环的特征,得到了以下结果:(1)\(\mathrm ACA_{0}\)等价于左半单圈上的任何左模在\(\math rm RCA_{0}\)上是投射的;(2) \(\mathrm ACA_{0}\)等价于左半单环上的任何左模在\(\math rm RCA_{0}\)上内射的语句;(3) \(\mathrm RCA_{0}\)证明了如果每个循环左R模都是投影的,则R是左半单环;(4) \(\mathrm ACA_{0}\)证明了如果每个循环左R模都是内射的,则R是左半单环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reverse mathematics and semisimple rings

This paper studies various equivalent characterizations of left semisimple rings from the standpoint of reverse mathematics. We first show that \(\mathrm ACA_{0}\) is equivalent to the statement that any left module over a left semisimple ring is semisimple over \(\mathrm RCA_{0}\). We then study characterizations of left semisimple rings in terms of projective modules as well as injective modules, and obtain the following results: (1) \(\mathrm ACA_{0}\) is equivalent to the statement that any left module over a left semisimple ring is projective over \(\mathrm RCA_{0}\); (2) \(\mathrm ACA_{0}\) is equivalent to the statement that any left module over a left semisimple ring is injective over \(\mathrm RCA_{0}\); (3) \(\mathrm RCA_{0}\) proves the statement that if every cyclic left R-module is projective, then R is a left semisimple ring; (4) \(\mathrm ACA_{0}\) proves the statement that if every cyclic left R-module is injective, then R is a left semisimple ring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信