无穷方差GARCH噪声下的近非平稳过程

IF 1 4区 数学
Rong-mao Zhang, Qi-meng Liu, Jian-hua Shi
{"title":"无穷方差GARCH噪声下的近非平稳过程","authors":"Rong-mao Zhang,&nbsp;Qi-meng Liu,&nbsp;Jian-hua Shi","doi":"10.1007/s11766-022-4442-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>Y</i><sub><i>t</i></sub> be an autoregressive process with order one, i.e., <i>Y</i><sub><i>t</i></sub> = <i>μ</i> + <i>ϕ</i><sub><i>n</i></sub><i>Y</i><sub><i>t</i>−1</sub> + <i>ε</i><sub><i>t</i></sub>, where [<i>ε</i><sub><i>t</i></sub>] is a heavy tailed general GARCH noise with tail index <i>α</i>. Let <span>\\({{\\hat \\phi }_n}\\)</span> be the least squares estimator (LSE) of <i>ϕ</i><sub><i>n</i></sub> For <i>μ</i> = 0 and <i>α</i> &lt; 2, it is shown by Zhang and Ling (2015) that <span>\\({{\\hat \\phi }_n}\\)</span> is inconsistent when <i>Y</i><sub><i>t</i></sub> is stationary (i.e., <i>ϕ</i><sub><i>n</i></sub> ≡ <i>ϕ</i> &lt; 1), however, Chan and Zhang (2010) showed that <span>\\({{\\hat \\phi }_n}\\)</span> is still consistent with convergence rate <i>n</i> when <i>Y</i><sub><i>t</i></sub> is a unit-root process (i.e., <i>ϕ</i><sub><i>n</i></sub> = 1) and [<i>ε</i><sub><i>t</i></sub>] is a GARCH(1, 1) noise. There is a gap between the stationary and nonstationary cases. In this paper, two important issues will be considered: (1) what about the nearly unit root case? (2) When can <i>ϕ</i> be estimated consistently by the LSE? We show that when <i>ϕ</i><sub><i>n</i></sub> = 1 − <i>c/n</i>, then <span>\\({{\\hat \\phi }_n}\\)</span> converges to a functional of stable process with convergence rate <i>n</i>. Further, we show that if lim<sub><i>n</i>→∞</sub><i>k</i><sub><i>n</i></sub>(1 − <i>ϕ</i><sub><i>n</i></sub>) = <i>c</i> for a positive constant <i>c</i>, then <span>\\({k_n}({\\hat \\phi _n} - \\phi )\\)</span> converges to a functional of two stable variables with tail index <i>α</i>/2, which means that <i>ϕ</i><sub><i>n</i></sub> can be estimated consistently only when <i>k</i><sub><i>n</i></sub> → ∞.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"37 2","pages":"246 - 257"},"PeriodicalIF":1.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11766-022-4442-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Nearly nonstationary processes under infinite variance GARCH noises\",\"authors\":\"Rong-mao Zhang,&nbsp;Qi-meng Liu,&nbsp;Jian-hua Shi\",\"doi\":\"10.1007/s11766-022-4442-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>Y</i><sub><i>t</i></sub> be an autoregressive process with order one, i.e., <i>Y</i><sub><i>t</i></sub> = <i>μ</i> + <i>ϕ</i><sub><i>n</i></sub><i>Y</i><sub><i>t</i>−1</sub> + <i>ε</i><sub><i>t</i></sub>, where [<i>ε</i><sub><i>t</i></sub>] is a heavy tailed general GARCH noise with tail index <i>α</i>. Let <span>\\\\({{\\\\hat \\\\phi }_n}\\\\)</span> be the least squares estimator (LSE) of <i>ϕ</i><sub><i>n</i></sub> For <i>μ</i> = 0 and <i>α</i> &lt; 2, it is shown by Zhang and Ling (2015) that <span>\\\\({{\\\\hat \\\\phi }_n}\\\\)</span> is inconsistent when <i>Y</i><sub><i>t</i></sub> is stationary (i.e., <i>ϕ</i><sub><i>n</i></sub> ≡ <i>ϕ</i> &lt; 1), however, Chan and Zhang (2010) showed that <span>\\\\({{\\\\hat \\\\phi }_n}\\\\)</span> is still consistent with convergence rate <i>n</i> when <i>Y</i><sub><i>t</i></sub> is a unit-root process (i.e., <i>ϕ</i><sub><i>n</i></sub> = 1) and [<i>ε</i><sub><i>t</i></sub>] is a GARCH(1, 1) noise. There is a gap between the stationary and nonstationary cases. In this paper, two important issues will be considered: (1) what about the nearly unit root case? (2) When can <i>ϕ</i> be estimated consistently by the LSE? We show that when <i>ϕ</i><sub><i>n</i></sub> = 1 − <i>c/n</i>, then <span>\\\\({{\\\\hat \\\\phi }_n}\\\\)</span> converges to a functional of stable process with convergence rate <i>n</i>. Further, we show that if lim<sub><i>n</i>→∞</sub><i>k</i><sub><i>n</i></sub>(1 − <i>ϕ</i><sub><i>n</i></sub>) = <i>c</i> for a positive constant <i>c</i>, then <span>\\\\({k_n}({\\\\hat \\\\phi _n} - \\\\phi )\\\\)</span> converges to a functional of two stable variables with tail index <i>α</i>/2, which means that <i>ϕ</i><sub><i>n</i></sub> can be estimated consistently only when <i>k</i><sub><i>n</i></sub> → ∞.</p></div>\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":\"37 2\",\"pages\":\"246 - 257\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11766-022-4442-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-022-4442-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-022-4442-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设Yt是一阶自回归过程,即Yt=μ+ξnYt−1+εt,其中[εt]是尾指数为α的重尾广义GARCH噪声。设\({\hat\phi}_n}\)是对μ=0和α<;2,Zhang和Ling(2015)表明,当Yt是平稳的(即,Γn≠Γ<;1)时,\({\hat\phi}_n})是不一致的,然而,Chan和Zhang(2010)表明,在Yt是单位根过程(即,ξn=1)并且[εt]是GARCH(1,1)噪声时,\。平稳和非平稳情况之间存在差距。在本文中,将考虑两个重要问题:(1)近似单位根的情况如何?(2) 伦敦政治经济学院何时可以一致地估计?我们证明了当ξn=1−c/n时,\({\hat\phi}_n}\)收敛到具有收敛速度n的稳定过程的函数。此外,我们还证明了如果limn→∞对于正常数c,kn(1−ξn)=c,则\({k_n}({hat\phi _n}-\phi)\)收敛于尾指数为α/2的两个稳定变量的函数,这意味着只有当kn→ ∞.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nearly nonstationary processes under infinite variance GARCH noises

Let Yt be an autoregressive process with order one, i.e., Yt = μ + ϕnYt−1 + εt, where [εt] is a heavy tailed general GARCH noise with tail index α. Let \({{\hat \phi }_n}\) be the least squares estimator (LSE) of ϕn For μ = 0 and α < 2, it is shown by Zhang and Ling (2015) that \({{\hat \phi }_n}\) is inconsistent when Yt is stationary (i.e., ϕnϕ < 1), however, Chan and Zhang (2010) showed that \({{\hat \phi }_n}\) is still consistent with convergence rate n when Yt is a unit-root process (i.e., ϕn = 1) and [εt] is a GARCH(1, 1) noise. There is a gap between the stationary and nonstationary cases. In this paper, two important issues will be considered: (1) what about the nearly unit root case? (2) When can ϕ be estimated consistently by the LSE? We show that when ϕn = 1 − c/n, then \({{\hat \phi }_n}\) converges to a functional of stable process with convergence rate n. Further, we show that if limn→∞kn(1 − ϕn) = c for a positive constant c, then \({k_n}({\hat \phi _n} - \phi )\) converges to a functional of two stable variables with tail index α/2, which means that ϕn can be estimated consistently only when kn → ∞.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信