{"title":"由n个膨胀类别产生的n个精确类别","authors":"Jian He, Pan Yue Zhou","doi":"10.1007/s10114-023-1558-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\cal C}\\)</span> be a Krull–Schmidt <i>n</i>-exangulated category and <span>\\({\\cal A}\\)</span> be an <i>n</i>-extension closed subcategory of <span>\\({\\cal C}\\)</span>. Then <span>\\({\\cal A}\\)</span> inherits the <i>n</i>-exangulated structure from the given <i>n</i>-exangulated category in a natural way. This construction gives <i>n</i>-exangulated categories which are neither <i>n</i>-exact categories in the sense of Jasso nor (<i>n</i> + 2)-angulated categories in the sense of Geiss–Keller–Oppermann in general. Furthermore, we also give a sufficient condition on when an <i>n</i>-exangulated category <span>\\({\\cal A}\\)</span> is an <i>n</i>-exact category. These results generalize work by Klapproth and Zhou.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"n-exact Categories Arising from n-exangulated Categories\",\"authors\":\"Jian He, Pan Yue Zhou\",\"doi\":\"10.1007/s10114-023-1558-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({\\\\cal C}\\\\)</span> be a Krull–Schmidt <i>n</i>-exangulated category and <span>\\\\({\\\\cal A}\\\\)</span> be an <i>n</i>-extension closed subcategory of <span>\\\\({\\\\cal C}\\\\)</span>. Then <span>\\\\({\\\\cal A}\\\\)</span> inherits the <i>n</i>-exangulated structure from the given <i>n</i>-exangulated category in a natural way. This construction gives <i>n</i>-exangulated categories which are neither <i>n</i>-exact categories in the sense of Jasso nor (<i>n</i> + 2)-angulated categories in the sense of Geiss–Keller–Oppermann in general. Furthermore, we also give a sufficient condition on when an <i>n</i>-exangulated category <span>\\\\({\\\\cal A}\\\\)</span> is an <i>n</i>-exact category. These results generalize work by Klapproth and Zhou.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-023-1558-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-1558-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
n-exact Categories Arising from n-exangulated Categories
Let \({\cal C}\) be a Krull–Schmidt n-exangulated category and \({\cal A}\) be an n-extension closed subcategory of \({\cal C}\). Then \({\cal A}\) inherits the n-exangulated structure from the given n-exangulated category in a natural way. This construction gives n-exangulated categories which are neither n-exact categories in the sense of Jasso nor (n + 2)-angulated categories in the sense of Geiss–Keller–Oppermann in general. Furthermore, we also give a sufficient condition on when an n-exangulated category \({\cal A}\) is an n-exact category. These results generalize work by Klapproth and Zhou.