Doan Thi Nhu Quynh, Nguyen Huu Nhan, Le Thi Phuong Ngoc, Nguyen Thanh Long
{"title":"具有非线性记忆项的波动方程解的连续依赖和一般衰减","authors":"Doan Thi Nhu Quynh, Nguyen Huu Nhan, Le Thi Phuong Ngoc, Nguyen Thanh Long","doi":"10.21136/AM.2022.0200-21","DOIUrl":null,"url":null,"abstract":"<div><p>We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions to obtain the global solution, we prove the general decay property with positive initial energy for this global solution.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term\",\"authors\":\"Doan Thi Nhu Quynh, Nguyen Huu Nhan, Le Thi Phuong Ngoc, Nguyen Thanh Long\",\"doi\":\"10.21136/AM.2022.0200-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions to obtain the global solution, we prove the general decay property with positive initial energy for this global solution.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2022.0200-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2022.0200-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term
We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions to obtain the global solution, we prove the general decay property with positive initial energy for this global solution.