帮助用户识别在线错误信息的界面:使用近红外光谱测量怀疑

Leanne Hirshfield, Phil Bobko, Alex Barelka, Natalie Sommer, Senem Velipasalar
{"title":"帮助用户识别在线错误信息的界面:使用近红外光谱测量怀疑","authors":"Leanne Hirshfield,&nbsp;Phil Bobko,&nbsp;Alex Barelka,&nbsp;Natalie Sommer,&nbsp;Senem Velipasalar","doi":"10.1007/s41133-019-0011-8","DOIUrl":null,"url":null,"abstract":"<div><p>With terms like ‘fake news’ and ‘cyber attack’ dominating the news, skepticism toward the media and other online individuals has become a major facet of modern life. This paper views the way we process information during HCI through the lens of suspicion, a mentally taxing state that people enter before making a judgment about whether or not to trust information. With the goal of enabling objective, real-time measurements of suspicion during HCI, we describe an experiment where fNIRS was used to identify the neural correlates of suspicion in the brain. We developed a convolutional long short-term memory classifier that predicts suspicion using a <i>leave</i>-<i>one</i>-<i>participant</i>-<i>out</i> cross-validation scheme, with average accuracy greater than 76%. Notably, the brain regions implicated by our results dovetail with prior theoretical definitions of suspicion. We describe implications of this work for HCI, to augment users’ capabilities by enabling them to develop a ‘healthy skepticism’ to parse out truth from fiction online.</p></div>","PeriodicalId":100147,"journal":{"name":"Augmented Human Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41133-019-0011-8","citationCount":"7","resultStr":"{\"title\":\"Toward Interfaces that Help Users Identify Misinformation Online: Using fNIRS to Measure Suspicion\",\"authors\":\"Leanne Hirshfield,&nbsp;Phil Bobko,&nbsp;Alex Barelka,&nbsp;Natalie Sommer,&nbsp;Senem Velipasalar\",\"doi\":\"10.1007/s41133-019-0011-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With terms like ‘fake news’ and ‘cyber attack’ dominating the news, skepticism toward the media and other online individuals has become a major facet of modern life. This paper views the way we process information during HCI through the lens of suspicion, a mentally taxing state that people enter before making a judgment about whether or not to trust information. With the goal of enabling objective, real-time measurements of suspicion during HCI, we describe an experiment where fNIRS was used to identify the neural correlates of suspicion in the brain. We developed a convolutional long short-term memory classifier that predicts suspicion using a <i>leave</i>-<i>one</i>-<i>participant</i>-<i>out</i> cross-validation scheme, with average accuracy greater than 76%. Notably, the brain regions implicated by our results dovetail with prior theoretical definitions of suspicion. We describe implications of this work for HCI, to augment users’ capabilities by enabling them to develop a ‘healthy skepticism’ to parse out truth from fiction online.</p></div>\",\"PeriodicalId\":100147,\"journal\":{\"name\":\"Augmented Human Research\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s41133-019-0011-8\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Augmented Human Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41133-019-0011-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Augmented Human Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41133-019-0011-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着“假新闻”和“网络攻击”等术语在新闻中占据主导地位,对媒体和其他网络个人的怀疑已成为现代生活的一个主要方面。本文从怀疑的角度来看待我们在HCI期间处理信息的方式,怀疑是人们在判断是否信任信息之前进入的一种精神负担状态。为了在HCI期间实现对怀疑的客观、实时测量,我们描述了一个实验,其中fNIRS用于识别大脑中怀疑的神经相关性。我们开发了一种卷积长短期记忆分类器,该分类器使用留一参与者交叉验证方案预测怀疑,平均准确率超过76%。值得注意的是,我们的研究结果所涉及的大脑区域与之前对怀疑的理论定义相吻合。我们描述了这项工作对HCI的影响,通过使用户能够发展“健康的怀疑论”来在线解析小说中的真相,从而增强用户的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Interfaces that Help Users Identify Misinformation Online: Using fNIRS to Measure Suspicion

With terms like ‘fake news’ and ‘cyber attack’ dominating the news, skepticism toward the media and other online individuals has become a major facet of modern life. This paper views the way we process information during HCI through the lens of suspicion, a mentally taxing state that people enter before making a judgment about whether or not to trust information. With the goal of enabling objective, real-time measurements of suspicion during HCI, we describe an experiment where fNIRS was used to identify the neural correlates of suspicion in the brain. We developed a convolutional long short-term memory classifier that predicts suspicion using a leave-one-participant-out cross-validation scheme, with average accuracy greater than 76%. Notably, the brain regions implicated by our results dovetail with prior theoretical definitions of suspicion. We describe implications of this work for HCI, to augment users’ capabilities by enabling them to develop a ‘healthy skepticism’ to parse out truth from fiction online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信