基于聚十二烷基甲基硅氧烷的复合膜用于烃类混合物的低温分离

IF 2 Q4 CHEMISTRY, PHYSICAL
S. E. Sokolov, E. A. Grushevenko, V. V. Volkov, I. L. Borisov, S. Yu. Markova, M. G. Shalygin, A. V. Volkov
{"title":"基于聚十二烷基甲基硅氧烷的复合膜用于烃类混合物的低温分离","authors":"S. E. Sokolov,&nbsp;E. A. Grushevenko,&nbsp;V. V. Volkov,&nbsp;I. L. Borisov,&nbsp;S. Yu. Markova,&nbsp;M. G. Shalygin,&nbsp;A. V. Volkov","doi":"10.1134/S2517751622060099","DOIUrl":null,"url":null,"abstract":"<p>The permeability of <i>n</i>-butane and methane as well as their mixture through a PDecMS/MFFK composite membrane at reduced temperatures up to 0°C is for the first time studied in this work. According to the data of SEM, the thickness of the selective layer of PDecMS is 5 μm. It is shown that both the permeability coefficient of butane and ideal butane/methane selectivity <span>\\({{\\alpha }_{{{{{{{\\text{C}}}_{{\\text{4}}}}{{{\\text{H}}}_{{{\\text{10}}}}}} \\mathord{\\left/ {\\vphantom {{{{{\\text{C}}}_{{\\text{4}}}}{{{\\text{H}}}_{{{\\text{10}}}}}} {{\\text{C}}{{{\\text{H}}}_{{\\text{4}}}}}}} \\right. \\kern-0em} {{\\text{C}}{{{\\text{H}}}_{{\\text{4}}}}}}}}}\\)</span> increase as the temperature decreases from 60 down to 0°C. Thus, the permeability coefficient of butane is 11 400 Barrer at 0°C. It is important to emphasize that the ideal butane/methane selectivity of PDecMS/MFFK of 60 at 0°C is twofold higher than similar values for MDK and PDMS membranes (27 and 32, respectively). This is first of all associated with the difference in the values of the sorption selectivity α<sup>S</sup> of these polymers. Thus, the values of <span>\\(\\alpha _{{{{{{{\\text{C}}}_{{\\text{4}}}}{{{\\text{H}}}_{{{\\text{10}}}}}} \\mathord{\\left/ {\\vphantom {{{{{\\text{C}}}_{{\\text{4}}}}{{{\\text{H}}}_{{{\\text{10}}}}}} {{\\text{C}}{{{\\text{H}}}_{{\\text{4}}}}}}} \\right. \\kern-0em} {{\\text{C}}{{{\\text{H}}}_{{\\text{4}}}}}}}}^{{\\text{S}}}\\)</span> for PDecMS and PDMS at 0°C estimated based on the enthalpy of sorption are 170 and 95, respectively. In addition, the difference in the activation energies of diffusion of methane in PDecMS, PDMS, and MDK provides a sharper increase in the butane/methane permselectivity for PDecMS when compared to PDMS and MDK in the case of decreasing the measurement temperature. In the case of a C<sub>4</sub>H<sub>10</sub> (35 vol %)/CH<sub>4</sub> mixture, the butane/methane permselectivity of a PDecMS/MFFK membrane decreases down to 34, which is typical for all the membranes based on polysiloxanes.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 6","pages":"377 - 384"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S2517751622060099.pdf","citationCount":"2","resultStr":"{\"title\":\"A Composite Membrane Based on Polydecylmethylsiloxane for the Separation of Hydrocarbons Mixtures at Reduced Temperatures\",\"authors\":\"S. E. Sokolov,&nbsp;E. A. Grushevenko,&nbsp;V. V. Volkov,&nbsp;I. L. Borisov,&nbsp;S. Yu. Markova,&nbsp;M. G. Shalygin,&nbsp;A. V. Volkov\",\"doi\":\"10.1134/S2517751622060099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The permeability of <i>n</i>-butane and methane as well as their mixture through a PDecMS/MFFK composite membrane at reduced temperatures up to 0°C is for the first time studied in this work. According to the data of SEM, the thickness of the selective layer of PDecMS is 5 μm. It is shown that both the permeability coefficient of butane and ideal butane/methane selectivity <span>\\\\({{\\\\alpha }_{{{{{{{\\\\text{C}}}_{{\\\\text{4}}}}{{{\\\\text{H}}}_{{{\\\\text{10}}}}}} \\\\mathord{\\\\left/ {\\\\vphantom {{{{{\\\\text{C}}}_{{\\\\text{4}}}}{{{\\\\text{H}}}_{{{\\\\text{10}}}}}} {{\\\\text{C}}{{{\\\\text{H}}}_{{\\\\text{4}}}}}}} \\\\right. \\\\kern-0em} {{\\\\text{C}}{{{\\\\text{H}}}_{{\\\\text{4}}}}}}}}}\\\\)</span> increase as the temperature decreases from 60 down to 0°C. Thus, the permeability coefficient of butane is 11 400 Barrer at 0°C. It is important to emphasize that the ideal butane/methane selectivity of PDecMS/MFFK of 60 at 0°C is twofold higher than similar values for MDK and PDMS membranes (27 and 32, respectively). This is first of all associated with the difference in the values of the sorption selectivity α<sup>S</sup> of these polymers. Thus, the values of <span>\\\\(\\\\alpha _{{{{{{{\\\\text{C}}}_{{\\\\text{4}}}}{{{\\\\text{H}}}_{{{\\\\text{10}}}}}} \\\\mathord{\\\\left/ {\\\\vphantom {{{{{\\\\text{C}}}_{{\\\\text{4}}}}{{{\\\\text{H}}}_{{{\\\\text{10}}}}}} {{\\\\text{C}}{{{\\\\text{H}}}_{{\\\\text{4}}}}}}} \\\\right. \\\\kern-0em} {{\\\\text{C}}{{{\\\\text{H}}}_{{\\\\text{4}}}}}}}}^{{\\\\text{S}}}\\\\)</span> for PDecMS and PDMS at 0°C estimated based on the enthalpy of sorption are 170 and 95, respectively. In addition, the difference in the activation energies of diffusion of methane in PDecMS, PDMS, and MDK provides a sharper increase in the butane/methane permselectivity for PDecMS when compared to PDMS and MDK in the case of decreasing the measurement temperature. In the case of a C<sub>4</sub>H<sub>10</sub> (35 vol %)/CH<sub>4</sub> mixture, the butane/methane permselectivity of a PDecMS/MFFK membrane decreases down to 34, which is typical for all the membranes based on polysiloxanes.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"4 6\",\"pages\":\"377 - 384\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S2517751622060099.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751622060099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622060099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

本文首次研究了PDecMS/MFFK复合膜中正丁烷和甲烷及其混合物在低温至0℃下的渗透性。SEM数据显示,PDecMS的选择层厚度为5 μm。结果表明,从60℃到0℃,丁烷的渗透系数和理想丁烷/甲烷选择性\({{\alpha }_{{{{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} \mathord{\left/ {\vphantom {{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}} \right. \kern-0em} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}}}}\)随温度的降低而增大。因此,在0℃时,丁烷的渗透系数为11 400 Barrer。需要强调的是,PDecMS/MFFK在0°C下的理想丁烷/甲烷选择性为60,比MDK和PDMS膜的相似值(分别为27和32)高两倍。这首先与这些聚合物的吸附选择性αS值的不同有关。因此,根据吸附焓估计,PDecMS和PDMS在0℃时的\(\alpha _{{{{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} \mathord{\left/ {\vphantom {{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}} \right. \kern-0em} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}}}^{{\text{S}}}\)值分别为170和95。此外,甲烷在PDecMS、PDMS和MDK中扩散活化能的差异,使得PDecMS的丁烷/甲烷选择性在降低测量温度的情况下比PDMS和MDK有更大的提高。在C4H10(35卷)的情况下 %)/CH4 mixture, the butane/methane permselectivity of a PDecMS/MFFK membrane decreases down to 34, which is typical for all the membranes based on polysiloxanes.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Composite Membrane Based on Polydecylmethylsiloxane for the Separation of Hydrocarbons Mixtures at Reduced Temperatures

A Composite Membrane Based on Polydecylmethylsiloxane for the Separation of Hydrocarbons Mixtures at Reduced Temperatures

The permeability of n-butane and methane as well as their mixture through a PDecMS/MFFK composite membrane at reduced temperatures up to 0°C is for the first time studied in this work. According to the data of SEM, the thickness of the selective layer of PDecMS is 5 μm. It is shown that both the permeability coefficient of butane and ideal butane/methane selectivity \({{\alpha }_{{{{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} \mathord{\left/ {\vphantom {{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}} \right. \kern-0em} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}}}}\) increase as the temperature decreases from 60 down to 0°C. Thus, the permeability coefficient of butane is 11 400 Barrer at 0°C. It is important to emphasize that the ideal butane/methane selectivity of PDecMS/MFFK of 60 at 0°C is twofold higher than similar values for MDK and PDMS membranes (27 and 32, respectively). This is first of all associated with the difference in the values of the sorption selectivity αS of these polymers. Thus, the values of \(\alpha _{{{{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} \mathord{\left/ {\vphantom {{{{{\text{C}}}_{{\text{4}}}}{{{\text{H}}}_{{{\text{10}}}}}} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}} \right. \kern-0em} {{\text{C}}{{{\text{H}}}_{{\text{4}}}}}}}}^{{\text{S}}}\) for PDecMS and PDMS at 0°C estimated based on the enthalpy of sorption are 170 and 95, respectively. In addition, the difference in the activation energies of diffusion of methane in PDecMS, PDMS, and MDK provides a sharper increase in the butane/methane permselectivity for PDecMS when compared to PDMS and MDK in the case of decreasing the measurement temperature. In the case of a C4H10 (35 vol %)/CH4 mixture, the butane/methane permselectivity of a PDecMS/MFFK membrane decreases down to 34, which is typical for all the membranes based on polysiloxanes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
31.20%
发文量
38
期刊介绍: The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信