一类非强制椭圆型方程解的存在性结果

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
A. Marah, H. Redwane
{"title":"一类非强制椭圆型方程解的存在性结果","authors":"A. Marah,&nbsp;H. Redwane","doi":"10.1007/s10440-023-00609-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study a class of degenerate Dirichlet problems, whose prototype is </p><div><div><span>$$ \\left \\{ \\begin{aligned} &amp;-{\\mathrm{div}}\\Big(\\frac{\\nabla u}{(1+|u|)^{\\gamma }}+c(x)|u|^{\\theta -1}u \\log ^{\\beta }(1+|u|)\\Big)= f\\ \\ {\\mathrm{in}}\\ \\Omega , \\\\ &amp; u=0\\ \\ {\\mathrm{on}}\\ {\\partial \\Omega }, \\end{aligned} \\right . $$</span></div></div><p> where <span>\\(\\Omega \\)</span> is a bounded open subset of <span>\\(\\mathbb{R}^{N}\\)</span>. <span>\\(0&lt;\\gamma &lt;1\\)</span>, <span>\\(0&lt;\\theta \\leq 1\\)</span> and <span>\\(0\\leq \\beta &lt;1\\)</span>. We prove existence of bounded solutions when <span>\\(f\\)</span> and <span>\\(c\\)</span> belong to suitable Lebesgue spaces. Moreover, we investegate the existence of renormalized solutions when the function <span>\\(f\\)</span> belongs only to <span>\\(L^{1}(\\Omega )\\)</span>.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"187 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence Result for Solutions to Some Noncoercive Elliptic Equations\",\"authors\":\"A. Marah,&nbsp;H. Redwane\",\"doi\":\"10.1007/s10440-023-00609-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we study a class of degenerate Dirichlet problems, whose prototype is </p><div><div><span>$$ \\\\left \\\\{ \\\\begin{aligned} &amp;-{\\\\mathrm{div}}\\\\Big(\\\\frac{\\\\nabla u}{(1+|u|)^{\\\\gamma }}+c(x)|u|^{\\\\theta -1}u \\\\log ^{\\\\beta }(1+|u|)\\\\Big)= f\\\\ \\\\ {\\\\mathrm{in}}\\\\ \\\\Omega , \\\\\\\\ &amp; u=0\\\\ \\\\ {\\\\mathrm{on}}\\\\ {\\\\partial \\\\Omega }, \\\\end{aligned} \\\\right . $$</span></div></div><p> where <span>\\\\(\\\\Omega \\\\)</span> is a bounded open subset of <span>\\\\(\\\\mathbb{R}^{N}\\\\)</span>. <span>\\\\(0&lt;\\\\gamma &lt;1\\\\)</span>, <span>\\\\(0&lt;\\\\theta \\\\leq 1\\\\)</span> and <span>\\\\(0\\\\leq \\\\beta &lt;1\\\\)</span>. We prove existence of bounded solutions when <span>\\\\(f\\\\)</span> and <span>\\\\(c\\\\)</span> belong to suitable Lebesgue spaces. Moreover, we investegate the existence of renormalized solutions when the function <span>\\\\(f\\\\)</span> belongs only to <span>\\\\(L^{1}(\\\\Omega )\\\\)</span>.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-023-00609-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00609-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了一类退化的Dirichlet问题,其原型是$$\left\{\begin{aligned}&-{\mathrm{div}}\Big(\frac{\nabla u}{(1+|u|)^{\gamma}}+c(x)|u|^{\theta-1}u\log^{\beta}(1+| u|)\Big)=f\\mathrm{in};u=0\\{\mathrm{on}}\{\partial\Omega},\ end{aligned}\ right。$$其中\(\Omega\)是\(\mathbb{R}^{N}\)的有界开子集\(0<;\gamma<;1\)、\(0&l特;\theta\leq1\)和\(0\leq\beta<;1\r\)。当\(f)和\(c)属于适当的Lebesgue空间时,我们证明了有界解的存在性。此外,当函数\(f\)只属于\(L^{1}(\Omega)\)时,我们还研究了重整化解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence Result for Solutions to Some Noncoercive Elliptic Equations

In this work, we study a class of degenerate Dirichlet problems, whose prototype is

$$ \left \{ \begin{aligned} &-{\mathrm{div}}\Big(\frac{\nabla u}{(1+|u|)^{\gamma }}+c(x)|u|^{\theta -1}u \log ^{\beta }(1+|u|)\Big)= f\ \ {\mathrm{in}}\ \Omega , \\ & u=0\ \ {\mathrm{on}}\ {\partial \Omega }, \end{aligned} \right . $$

where \(\Omega \) is a bounded open subset of \(\mathbb{R}^{N}\). \(0<\gamma <1\), \(0<\theta \leq 1\) and \(0\leq \beta <1\). We prove existence of bounded solutions when \(f\) and \(c\) belong to suitable Lebesgue spaces. Moreover, we investegate the existence of renormalized solutions when the function \(f\) belongs only to \(L^{1}(\Omega )\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信