{"title":"半无限圆柱体中Forchheimer流体方程的空间衰减估计","authors":"Xuejiao Chen, Yuanfei Li","doi":"10.21136/AM.2022.0196-22","DOIUrl":null,"url":null,"abstract":"<div><p>The spatial behavior of solutions is studied in the model of Forchheimer equations. Using the energy estimate method and the differential inequality technology, exponential decay bounds for solutions are derived. To make the decay bounds explicit, we obtain the upper bound for the total energy. We also extend the study of spatial behavior of Forchheimer porous material in a saturated porous medium.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatial decay estimates for the Forchheimer fluid equations in a semi-infinite cylinder\",\"authors\":\"Xuejiao Chen, Yuanfei Li\",\"doi\":\"10.21136/AM.2022.0196-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The spatial behavior of solutions is studied in the model of Forchheimer equations. Using the energy estimate method and the differential inequality technology, exponential decay bounds for solutions are derived. To make the decay bounds explicit, we obtain the upper bound for the total energy. We also extend the study of spatial behavior of Forchheimer porous material in a saturated porous medium.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2022.0196-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2022.0196-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatial decay estimates for the Forchheimer fluid equations in a semi-infinite cylinder
The spatial behavior of solutions is studied in the model of Forchheimer equations. Using the energy estimate method and the differential inequality technology, exponential decay bounds for solutions are derived. To make the decay bounds explicit, we obtain the upper bound for the total energy. We also extend the study of spatial behavior of Forchheimer porous material in a saturated porous medium.