Yingqin Luo, Jing-jun Lou, Yan-bing Zhang, Jing-ru Li
{"title":"周期性空腔结构的吸声机理","authors":"Yingqin Luo, Jing-jun Lou, Yan-bing Zhang, Jing-ru Li","doi":"10.1007/s40857-021-00233-6","DOIUrl":null,"url":null,"abstract":"<div><p>A simplified finite element method (FEM) simulation method has been established and validated for analyzing the sound absorption mechanism of structures with periodic axisymmetric cavities. Combined with genetic algorithm, the simplified FEM method is used to optimize the sound absorption coefficient of the structure containing periodic cylindrical cavities and variable cross section cavities. The result of variable section cavities is much better than the case of cylindrical cavities. The effect of cavity shape on sound absorption mechanism is discussed through energy dissipation, structure deformation and modal analysis of the absorption structures. It is found that the cavity structure resonances include bending vibration of the surface layer and radial motion of particles near the cavities. The radial motion also changes along the axial direction. Adding geometric design parameters of the cavity cross section are conducive to moving the radial mode to low frequency. The radial vibration has a great influence on absorption performance, which is more conducive to promoting the conversion of longitudinal waves into transverse waves with more energy dissipation. Finally, a better sound absorption performance is obtained by introducing the material parameter of Young's modulus into the optimization model, indicating that comprehensive consideration of geometry and material parameters for optimization is expected to obtain the desired sound absorption structure in engineering practice.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40857-021-00233-6","citationCount":"4","resultStr":"{\"title\":\"Sound-Absorption Mechanism of Structures with Periodic Cavities\",\"authors\":\"Yingqin Luo, Jing-jun Lou, Yan-bing Zhang, Jing-ru Li\",\"doi\":\"10.1007/s40857-021-00233-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A simplified finite element method (FEM) simulation method has been established and validated for analyzing the sound absorption mechanism of structures with periodic axisymmetric cavities. Combined with genetic algorithm, the simplified FEM method is used to optimize the sound absorption coefficient of the structure containing periodic cylindrical cavities and variable cross section cavities. The result of variable section cavities is much better than the case of cylindrical cavities. The effect of cavity shape on sound absorption mechanism is discussed through energy dissipation, structure deformation and modal analysis of the absorption structures. It is found that the cavity structure resonances include bending vibration of the surface layer and radial motion of particles near the cavities. The radial motion also changes along the axial direction. Adding geometric design parameters of the cavity cross section are conducive to moving the radial mode to low frequency. The radial vibration has a great influence on absorption performance, which is more conducive to promoting the conversion of longitudinal waves into transverse waves with more energy dissipation. Finally, a better sound absorption performance is obtained by introducing the material parameter of Young's modulus into the optimization model, indicating that comprehensive consideration of geometry and material parameters for optimization is expected to obtain the desired sound absorption structure in engineering practice.</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40857-021-00233-6\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-021-00233-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-021-00233-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sound-Absorption Mechanism of Structures with Periodic Cavities
A simplified finite element method (FEM) simulation method has been established and validated for analyzing the sound absorption mechanism of structures with periodic axisymmetric cavities. Combined with genetic algorithm, the simplified FEM method is used to optimize the sound absorption coefficient of the structure containing periodic cylindrical cavities and variable cross section cavities. The result of variable section cavities is much better than the case of cylindrical cavities. The effect of cavity shape on sound absorption mechanism is discussed through energy dissipation, structure deformation and modal analysis of the absorption structures. It is found that the cavity structure resonances include bending vibration of the surface layer and radial motion of particles near the cavities. The radial motion also changes along the axial direction. Adding geometric design parameters of the cavity cross section are conducive to moving the radial mode to low frequency. The radial vibration has a great influence on absorption performance, which is more conducive to promoting the conversion of longitudinal waves into transverse waves with more energy dissipation. Finally, a better sound absorption performance is obtained by introducing the material parameter of Young's modulus into the optimization model, indicating that comprehensive consideration of geometry and material parameters for optimization is expected to obtain the desired sound absorption structure in engineering practice.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.