{"title":"关于带\\(O(x^\\gamma )\\)余数的池原型陶伯利定理","authors":"Michael Müger","doi":"10.1007/s12188-017-0187-0","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by analytic number theory, we explore remainder versions of Ikehara’s Tauberian theorem yielding power law remainder terms. More precisely, for <span>\\(f:[1,\\infty )\\rightarrow {\\mathbb R}\\)</span> non-negative and non-decreasing we prove <span>\\(f(x)-x=O(x^\\gamma )\\)</span> with <span>\\(\\gamma <1\\)</span> under certain assumptions on <i>f</i>. We state a conjecture concerning the weakest natural assumptions and show that we cannot hope for more.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2017-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-017-0187-0","citationCount":"3","resultStr":"{\"title\":\"On Ikehara type Tauberian theorems with \\\\(O(x^\\\\gamma )\\\\) remainders\",\"authors\":\"Michael Müger\",\"doi\":\"10.1007/s12188-017-0187-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by analytic number theory, we explore remainder versions of Ikehara’s Tauberian theorem yielding power law remainder terms. More precisely, for <span>\\\\(f:[1,\\\\infty )\\\\rightarrow {\\\\mathbb R}\\\\)</span> non-negative and non-decreasing we prove <span>\\\\(f(x)-x=O(x^\\\\gamma )\\\\)</span> with <span>\\\\(\\\\gamma <1\\\\)</span> under certain assumptions on <i>f</i>. We state a conjecture concerning the weakest natural assumptions and show that we cannot hope for more.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-017-0187-0\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-017-0187-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-017-0187-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Ikehara type Tauberian theorems with \(O(x^\gamma )\) remainders
Motivated by analytic number theory, we explore remainder versions of Ikehara’s Tauberian theorem yielding power law remainder terms. More precisely, for \(f:[1,\infty )\rightarrow {\mathbb R}\) non-negative and non-decreasing we prove \(f(x)-x=O(x^\gamma )\) with \(\gamma <1\) under certain assumptions on f. We state a conjecture concerning the weakest natural assumptions and show that we cannot hope for more.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.