关于带\(O(x^\gamma )\)余数的池原型陶伯利定理

IF 0.4 4区 数学 Q4 MATHEMATICS
Michael Müger
{"title":"关于带\\(O(x^\\gamma )\\)余数的池原型陶伯利定理","authors":"Michael Müger","doi":"10.1007/s12188-017-0187-0","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by analytic number theory, we explore remainder versions of Ikehara’s Tauberian theorem yielding power law remainder terms. More precisely, for <span>\\(f:[1,\\infty )\\rightarrow {\\mathbb R}\\)</span> non-negative and non-decreasing we prove <span>\\(f(x)-x=O(x^\\gamma )\\)</span> with <span>\\(\\gamma &lt;1\\)</span> under certain assumptions on <i>f</i>. We state a conjecture concerning the weakest natural assumptions and show that we cannot hope for more.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2017-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-017-0187-0","citationCount":"3","resultStr":"{\"title\":\"On Ikehara type Tauberian theorems with \\\\(O(x^\\\\gamma )\\\\) remainders\",\"authors\":\"Michael Müger\",\"doi\":\"10.1007/s12188-017-0187-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by analytic number theory, we explore remainder versions of Ikehara’s Tauberian theorem yielding power law remainder terms. More precisely, for <span>\\\\(f:[1,\\\\infty )\\\\rightarrow {\\\\mathbb R}\\\\)</span> non-negative and non-decreasing we prove <span>\\\\(f(x)-x=O(x^\\\\gamma )\\\\)</span> with <span>\\\\(\\\\gamma &lt;1\\\\)</span> under certain assumptions on <i>f</i>. We state a conjecture concerning the weakest natural assumptions and show that we cannot hope for more.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-017-0187-0\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-017-0187-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-017-0187-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在解析数论的激励下,我们探索了Ikehara的陶伯利定理的剩余版本,得到幂律剩余项。更准确地说,对于\(f:[1,\infty )\rightarrow {\mathbb R}\)非负和非递减,我们在f的某些假设下用\(\gamma <1\)证明了\(f(x)-x=O(x^\gamma )\)。我们陈述了一个关于最弱自然假设的猜想,并表明我们不能指望更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Ikehara type Tauberian theorems with \(O(x^\gamma )\) remainders

Motivated by analytic number theory, we explore remainder versions of Ikehara’s Tauberian theorem yielding power law remainder terms. More precisely, for \(f:[1,\infty )\rightarrow {\mathbb R}\) non-negative and non-decreasing we prove \(f(x)-x=O(x^\gamma )\) with \(\gamma <1\) under certain assumptions on f. We state a conjecture concerning the weakest natural assumptions and show that we cannot hope for more.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信