{"title":"一些差分多项式的零分布","authors":"Qian Li, Dan Liu, Zhi-bo Huang","doi":"10.1007/s11766-023-4179-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, suppose that <i>a, c</i> ∈ ℂ {0}, <i>c</i><sub><i>j</i></sub> ∈ ℂ(<i>j</i> = 1, 2, ⋯, <i>n</i>) are not all zeros and <i>n</i> ≥ 2, and <i>f</i>(<i>z</i>) is a finite order transcendental entire function with Borel finite exceptional value or with infinitely many multiple zeros, the zero distribution of difference polynomials of <i>f</i>(<i>z</i> + <i>c</i>) − <i>af</i><sup>n</sup>(<i>z</i>) and <i>f</i>(<i>z</i>)<i>f</i>(<i>z</i> + <i>c</i><sub>1</sub>) ⋯ <i>f</i>(<i>z</i> + <i>c</i><sub><i>n</i></sub>) are investigated. A number of examples are also presented to show that our results are best possible in a certain sense.</p></div>","PeriodicalId":67336,"journal":{"name":"Applied Mathematics-a Journal Of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero distribution of some difference polynomials\",\"authors\":\"Qian Li, Dan Liu, Zhi-bo Huang\",\"doi\":\"10.1007/s11766-023-4179-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, suppose that <i>a, c</i> ∈ ℂ {0}, <i>c</i><sub><i>j</i></sub> ∈ ℂ(<i>j</i> = 1, 2, ⋯, <i>n</i>) are not all zeros and <i>n</i> ≥ 2, and <i>f</i>(<i>z</i>) is a finite order transcendental entire function with Borel finite exceptional value or with infinitely many multiple zeros, the zero distribution of difference polynomials of <i>f</i>(<i>z</i> + <i>c</i>) − <i>af</i><sup>n</sup>(<i>z</i>) and <i>f</i>(<i>z</i>)<i>f</i>(<i>z</i> + <i>c</i><sub>1</sub>) ⋯ <i>f</i>(<i>z</i> + <i>c</i><sub><i>n</i></sub>) are investigated. A number of examples are also presented to show that our results are best possible in a certain sense.</p></div>\",\"PeriodicalId\":67336,\"journal\":{\"name\":\"Applied Mathematics-a Journal Of Chinese Universities Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-a Journal Of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-023-4179-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-a Journal Of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-023-4179-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
In this paper, suppose that a, c ∈ ℂ {0}, cj ∈ ℂ(j = 1, 2, ⋯, n) are not all zeros and n ≥ 2, and f(z) is a finite order transcendental entire function with Borel finite exceptional value or with infinitely many multiple zeros, the zero distribution of difference polynomials of f(z + c) − afn(z) and f(z)f(z + c1) ⋯ f(z + cn) are investigated. A number of examples are also presented to show that our results are best possible in a certain sense.