涉及非定域项和临界指数的Schrödinger-Poisson系统的解

IF 1 4区 数学
Xiu-ming Mo, An-min Mao, Xiang-xiang Wang
{"title":"涉及非定域项和临界指数的Schrödinger-Poisson系统的解","authors":"Xiu-ming Mo,&nbsp;An-min Mao,&nbsp;Xiang-xiang Wang","doi":"10.1007/s11766-023-4064-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the following Kirchhoff-Schrödinger-Poisson system: </p><div><div><span>$$\\left\\{ {\\matrix{{ - (a + b\\int_{{\\mathbb{R}^3}} {|\\nabla u{|^2})\\Delta u + u + \\phi u = \\mu Q(x)|u{|^{q - 2}}u + K(x)|u{|^4}u,} } \\hfill &amp; {{\\rm{in}}\\,\\,\\,{\\mathbb{R}^3},} \\hfill \\cr { - \\Delta \\phi = {u^2},} \\hfill &amp; {{\\rm{in}}\\,\\,\\,{\\mathbb{R}^3},} \\hfill \\cr } } \\right.$$</span></div></div><p> the nonlinear growth of ∣<i>u</i>∣<sup>4</sup>\n<i>u</i> reaches the Sobolev critical exponent. By combining the variational method with the concentration-compactness principle of Lions, we establish the existence of a positive solution and a positive radial solution to this problem under some suitable conditions. The nonlinear term includes the nonlinearity <i>f</i>(<i>u</i>) ∼∣<i>u</i>∣<sup>q−2</sup><i>u</i> for the well-studied case <i>q</i> ∈ [4, 6), and the less-studied case <i>q</i> ∈ (2, 3), we adopt two different strategies to handle these cases. Our result improves and extends some related works in the literature.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"38 3","pages":"357 - 372"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions for Schrödinger-Poisson system involving nonlocal term and critical exponent\",\"authors\":\"Xiu-ming Mo,&nbsp;An-min Mao,&nbsp;Xiang-xiang Wang\",\"doi\":\"10.1007/s11766-023-4064-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the following Kirchhoff-Schrödinger-Poisson system: </p><div><div><span>$$\\\\left\\\\{ {\\\\matrix{{ - (a + b\\\\int_{{\\\\mathbb{R}^3}} {|\\\\nabla u{|^2})\\\\Delta u + u + \\\\phi u = \\\\mu Q(x)|u{|^{q - 2}}u + K(x)|u{|^4}u,} } \\\\hfill &amp; {{\\\\rm{in}}\\\\,\\\\,\\\\,{\\\\mathbb{R}^3},} \\\\hfill \\\\cr { - \\\\Delta \\\\phi = {u^2},} \\\\hfill &amp; {{\\\\rm{in}}\\\\,\\\\,\\\\,{\\\\mathbb{R}^3},} \\\\hfill \\\\cr } } \\\\right.$$</span></div></div><p> the nonlinear growth of ∣<i>u</i>∣<sup>4</sup>\\n<i>u</i> reaches the Sobolev critical exponent. By combining the variational method with the concentration-compactness principle of Lions, we establish the existence of a positive solution and a positive radial solution to this problem under some suitable conditions. The nonlinear term includes the nonlinearity <i>f</i>(<i>u</i>) ∼∣<i>u</i>∣<sup>q−2</sup><i>u</i> for the well-studied case <i>q</i> ∈ [4, 6), and the less-studied case <i>q</i> ∈ (2, 3), we adopt two different strategies to handle these cases. Our result improves and extends some related works in the literature.</p></div>\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":\"38 3\",\"pages\":\"357 - 372\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-023-4064-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-023-4064-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑如下Kirchhoff-Schrödinger-Poisson系统:$$\left\{ {\matrix{{ - (a + b\int_{{\mathbb{R}^3}} {|\nabla u{|^2})\Delta u + u + \phi u = \mu Q(x)|u{|^{q - 2}}u + K(x)|u{|^4}u,} } \hfill & {{\rm{in}}\,\,\,{\mathbb{R}^3},} \hfill \cr { - \Delta \phi = {u^2},} \hfill & {{\rm{in}}\,\,\,{\mathbb{R}^3},} \hfill \cr } } \right.$$供∣u供∣4u的非线性增长达到Sobolev临界指数。将变分方法与Lions的集中紧性原理相结合,在一定条件下,建立了该问题正解和正径向解的存在性。非线性项包括非线性f(u) ~∣u∣q−2u对于研究充分的情况q∈[4,6]和较少研究的情况q∈(2,3),我们采用两种不同的策略来处理这些情况。我们的结果改进和扩展了文献中的一些相关工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions for Schrödinger-Poisson system involving nonlocal term and critical exponent

In this paper, we consider the following Kirchhoff-Schrödinger-Poisson system:

$$\left\{ {\matrix{{ - (a + b\int_{{\mathbb{R}^3}} {|\nabla u{|^2})\Delta u + u + \phi u = \mu Q(x)|u{|^{q - 2}}u + K(x)|u{|^4}u,} } \hfill & {{\rm{in}}\,\,\,{\mathbb{R}^3},} \hfill \cr { - \Delta \phi = {u^2},} \hfill & {{\rm{in}}\,\,\,{\mathbb{R}^3},} \hfill \cr } } \right.$$

the nonlinear growth of ∣u4 u reaches the Sobolev critical exponent. By combining the variational method with the concentration-compactness principle of Lions, we establish the existence of a positive solution and a positive radial solution to this problem under some suitable conditions. The nonlinear term includes the nonlinearity f(u) ∼∣uq−2u for the well-studied case q ∈ [4, 6), and the less-studied case q ∈ (2, 3), we adopt two different strategies to handle these cases. Our result improves and extends some related works in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信