用DG方法对VG过程下的期权进行估值

Pub Date : 2021-10-06 DOI:10.21136/AM.2021.0345-20
Jiří Hozman, Tomáš Tichý
{"title":"用DG方法对VG过程下的期权进行估值","authors":"Jiří Hozman,&nbsp;Tomáš Tichý","doi":"10.21136/AM.2021.0345-20","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents a discontinuous Galerkin method for solving partial integrodifferential equations arising from the European as well as American option pricing when the underlying asset follows an exponential variance gamma process. For practical purposes of numerical solving we introduce the modified option pricing problem resulting from a localization to a bounded domain and an approximation of small jumps, and we discuss the related error estimates. Then we employ a robust numerical procedure based on piecewise polynomial generally discontinuous approximations in the spatial domain. This technique enables a simple treatment of the American early exercise constraint by a direct encompassing it as an additional nonlinear source term to the governing equation. Special attention is paid to the proper discretization of non-local jump integral components, which is based on splitting integrals with respect to the domain according to the size of the jumps. Moreover, to preserve sparsity of resulting linear algebraic systems the pricing equation is integrated in the temporal variable by a semi-implicit Euler scheme. Finally, the numerical results demonstrate the capability of the numerical scheme presented within the reference benchmarks.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Option valuation under the VG process by a DG method\",\"authors\":\"Jiří Hozman,&nbsp;Tomáš Tichý\",\"doi\":\"10.21136/AM.2021.0345-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents a discontinuous Galerkin method for solving partial integrodifferential equations arising from the European as well as American option pricing when the underlying asset follows an exponential variance gamma process. For practical purposes of numerical solving we introduce the modified option pricing problem resulting from a localization to a bounded domain and an approximation of small jumps, and we discuss the related error estimates. Then we employ a robust numerical procedure based on piecewise polynomial generally discontinuous approximations in the spatial domain. This technique enables a simple treatment of the American early exercise constraint by a direct encompassing it as an additional nonlinear source term to the governing equation. Special attention is paid to the proper discretization of non-local jump integral components, which is based on splitting integrals with respect to the domain according to the size of the jumps. Moreover, to preserve sparsity of resulting linear algebraic systems the pricing equation is integrated in the temporal variable by a semi-implicit Euler scheme. Finally, the numerical results demonstrate the capability of the numerical scheme presented within the reference benchmarks.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2021.0345-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2021.0345-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种不连续Galerkin方法,用于求解欧式和美式期权定价中标的资产服从指数方差过程时的偏积分微分方程。为了数值求解的实际目的,我们引入了一种修正期权定价问题,该问题是由定位到有界域和小跳跃近似引起的,并讨论了相关的误差估计。在此基础上,提出了一种基于空间域分段多项式一般不连续近似的鲁棒数值方法。这种技术通过直接将美国早期运动约束作为附加的非线性源项包含在控制方程中,从而可以简单地处理美国早期运动约束。特别注意非局部跳跃积分分量的适当离散化,这是基于根据跳跃的大小在域上分裂积分。此外,为了保持所得到的线性代数系统的稀疏性,定价方程采用半隐式欧拉格式在时间变量上进行积分。最后,数值结果验证了在参考基准内所提出的数值方案的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Option valuation under the VG process by a DG method

The paper presents a discontinuous Galerkin method for solving partial integrodifferential equations arising from the European as well as American option pricing when the underlying asset follows an exponential variance gamma process. For practical purposes of numerical solving we introduce the modified option pricing problem resulting from a localization to a bounded domain and an approximation of small jumps, and we discuss the related error estimates. Then we employ a robust numerical procedure based on piecewise polynomial generally discontinuous approximations in the spatial domain. This technique enables a simple treatment of the American early exercise constraint by a direct encompassing it as an additional nonlinear source term to the governing equation. Special attention is paid to the proper discretization of non-local jump integral components, which is based on splitting integrals with respect to the domain according to the size of the jumps. Moreover, to preserve sparsity of resulting linear algebraic systems the pricing equation is integrated in the temporal variable by a semi-implicit Euler scheme. Finally, the numerical results demonstrate the capability of the numerical scheme presented within the reference benchmarks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信