\(G_2\)平面溶剂流形上的结构

IF 0.4 4区 数学 Q4 MATHEMATICS
Alejandro Tolcachier
{"title":"\\(G_2\\)平面溶剂流形上的结构","authors":"Alejandro Tolcachier","doi":"10.1007/s12188-022-00261-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we study the relation between flat solvmanifolds and <span>\\(G_2\\)</span>-geometry. First, we give a classification of 7-dimensional flat splittable solvmanifolds using the classification of finite subgroups of <span>\\(\\mathsf{GL}(n,\\mathbb {Z})\\)</span> for <span>\\(n=5\\)</span> and <span>\\(n=6\\)</span>. Then, we look for closed, coclosed and divergence-free <span>\\(G_2\\)</span>-structures compatible with the flat metric on them. In particular, we provide explicit examples of compact flat manifolds with a torsion-free <span>\\(G_2\\)</span>-structure whose finite holonomy is cyclic and contained in <span>\\(G_2\\)</span>, and examples of compact flat manifolds admitting a divergence-free <span>\\(G_2\\)</span>-structure.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"\\\\(G_2\\\\)-structures on flat solvmanifolds\",\"authors\":\"Alejandro Tolcachier\",\"doi\":\"10.1007/s12188-022-00261-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we study the relation between flat solvmanifolds and <span>\\\\(G_2\\\\)</span>-geometry. First, we give a classification of 7-dimensional flat splittable solvmanifolds using the classification of finite subgroups of <span>\\\\(\\\\mathsf{GL}(n,\\\\mathbb {Z})\\\\)</span> for <span>\\\\(n=5\\\\)</span> and <span>\\\\(n=6\\\\)</span>. Then, we look for closed, coclosed and divergence-free <span>\\\\(G_2\\\\)</span>-structures compatible with the flat metric on them. In particular, we provide explicit examples of compact flat manifolds with a torsion-free <span>\\\\(G_2\\\\)</span>-structure whose finite holonomy is cyclic and contained in <span>\\\\(G_2\\\\)</span>, and examples of compact flat manifolds admitting a divergence-free <span>\\\\(G_2\\\\)</span>-structure.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-022-00261-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-022-00261-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了平面解流形与\(G_2\) -几何的关系。首先,利用\(\mathsf{GL}(n,\mathbb {Z})\)对\(n=5\)和\(n=6\)的有限子群的分类,给出了7维平面可分溶剂流形的分类。然后,我们寻找与平面度规兼容的封闭、共封闭和无发散\(G_2\)结构。特别地,我们提供了具有无扭\(G_2\) -结构的紧平流形的显式例子,其有限完整度是循环的,包含在\(G_2\)中,以及具有无散度\(G_2\) -结构的紧平流形的显式例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
\(G_2\)-structures on flat solvmanifolds

In this article we study the relation between flat solvmanifolds and \(G_2\)-geometry. First, we give a classification of 7-dimensional flat splittable solvmanifolds using the classification of finite subgroups of \(\mathsf{GL}(n,\mathbb {Z})\) for \(n=5\) and \(n=6\). Then, we look for closed, coclosed and divergence-free \(G_2\)-structures compatible with the flat metric on them. In particular, we provide explicit examples of compact flat manifolds with a torsion-free \(G_2\)-structure whose finite holonomy is cyclic and contained in \(G_2\), and examples of compact flat manifolds admitting a divergence-free \(G_2\)-structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信