\(A_{1}\) -塔的模块化形式

IF 0.4 4区 数学 Q4 MATHEMATICS
Martin Woitalla
{"title":"\\(A_{1}\\) -塔的模块化形式","authors":"Martin Woitalla","doi":"10.1007/s12188-018-0197-6","DOIUrl":null,"url":null,"abstract":"<div><p>In the 1960s Igusa determined the graded ring of Siegel modular forms of genus two. He used theta series to construct <span>\\(\\chi _{5}\\)</span>, the cusp form of lowest weight for the group <span>\\({\\text {Sp}}(2,\\mathbb {Z})\\)</span>. In 2010 Gritsenko found three towers of orthogonal type modular forms which are connected with certain series of root lattices. In this setting Siegel modular forms can be identified with the orthogonal group of signature (2, 3) for the lattice <span>\\(A_{1}\\)</span> and Igusa’s form <span>\\(\\chi _{5}\\)</span> appears as the roof of this tower. We use this interpretation to construct a framework for this tower which uses three different types of constructions for modular forms. It turns out that our method produces simple coordinates.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-018-0197-6","citationCount":"1","resultStr":"{\"title\":\"Modular forms for the \\\\(A_{1}\\\\)-tower\",\"authors\":\"Martin Woitalla\",\"doi\":\"10.1007/s12188-018-0197-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the 1960s Igusa determined the graded ring of Siegel modular forms of genus two. He used theta series to construct <span>\\\\(\\\\chi _{5}\\\\)</span>, the cusp form of lowest weight for the group <span>\\\\({\\\\text {Sp}}(2,\\\\mathbb {Z})\\\\)</span>. In 2010 Gritsenko found three towers of orthogonal type modular forms which are connected with certain series of root lattices. In this setting Siegel modular forms can be identified with the orthogonal group of signature (2, 3) for the lattice <span>\\\\(A_{1}\\\\)</span> and Igusa’s form <span>\\\\(\\\\chi _{5}\\\\)</span> appears as the roof of this tower. We use this interpretation to construct a framework for this tower which uses three different types of constructions for modular forms. It turns out that our method produces simple coordinates.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-018-0197-6\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-018-0197-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-018-0197-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

20世纪60年代,Igusa确定了2属的Siegel模形式的梯度环。他用theta级数构造了\(\chi _{5}\),这是组\({\text {Sp}}(2,\mathbb {Z})\)的最低权重的尖形。2010年,Gritsenko发现了三个正交型模形式的塔,它们与一定的根格序列相连。在这种情况下,西格尔模形式可以用晶格的正交组(2,3)来识别\(A_{1}\),而伊古萨的形式\(\chi _{5}\)出现在这座塔的屋顶上。我们用这种解释为这座塔构建了一个框架,它使用了三种不同类型的模块化形式的结构。我们的方法产生了简单的坐标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular forms for the \(A_{1}\)-tower

In the 1960s Igusa determined the graded ring of Siegel modular forms of genus two. He used theta series to construct \(\chi _{5}\), the cusp form of lowest weight for the group \({\text {Sp}}(2,\mathbb {Z})\). In 2010 Gritsenko found three towers of orthogonal type modular forms which are connected with certain series of root lattices. In this setting Siegel modular forms can be identified with the orthogonal group of signature (2, 3) for the lattice \(A_{1}\) and Igusa’s form \(\chi _{5}\) appears as the roof of this tower. We use this interpretation to construct a framework for this tower which uses three different types of constructions for modular forms. It turns out that our method produces simple coordinates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信