关于Clifford代数的一些最新结果综述 \({\mathbb{R}^4}\)

Pub Date : 2023-08-10 DOI:10.21136/AM.2023.0182-22
Drahoslava Janovská, Gerhard Opfer
{"title":"关于Clifford代数的一些最新结果综述 \\({\\mathbb{R}^4}\\)","authors":"Drahoslava Janovská,&nbsp;Gerhard Opfer","doi":"10.21136/AM.2023.0182-22","DOIUrl":null,"url":null,"abstract":"<div><p>We will study applications of numerical methods in Clifford algebras in <span>\\({\\mathbb{R}^4}\\)</span>, in particular in the skew field of quaternions, in the algebra of coquaternions and in the other nondivision algebras in <span>\\({\\mathbb{R}^4}\\)</span>. In order to gain insight into the multidimensional case, we first consider linear equations in quaternions and coquaternions. Then we will search for zeros of one-sided (simple) quaternion polynomials. Three different classes of zeros can be distinguished. In general, the quaternionic coefficients can be placed on both sides of the powers. Then there are even five different classes of zeros. All results can be extended to other noncommutative algebras in <span>\\({\\mathbb{R}^4}\\)</span>. In the paper by R. Lauterbach and G. Opfer (2014), the authors constructed an exact Jacobi matrix for functions defined in noncommutative algebraic systems without the use of any partial derivative. We applied this technique to find the eigenvalues of the companion matrix as zeros of the companion polynomial by Newton’s method.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.21136/AM.2023.0182-22.pdf","citationCount":"0","resultStr":"{\"title\":\"A survey of some recent results on Clifford algebras in \\\\({\\\\mathbb{R}^4}\\\\)\",\"authors\":\"Drahoslava Janovská,&nbsp;Gerhard Opfer\",\"doi\":\"10.21136/AM.2023.0182-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We will study applications of numerical methods in Clifford algebras in <span>\\\\({\\\\mathbb{R}^4}\\\\)</span>, in particular in the skew field of quaternions, in the algebra of coquaternions and in the other nondivision algebras in <span>\\\\({\\\\mathbb{R}^4}\\\\)</span>. In order to gain insight into the multidimensional case, we first consider linear equations in quaternions and coquaternions. Then we will search for zeros of one-sided (simple) quaternion polynomials. Three different classes of zeros can be distinguished. In general, the quaternionic coefficients can be placed on both sides of the powers. Then there are even five different classes of zeros. All results can be extended to other noncommutative algebras in <span>\\\\({\\\\mathbb{R}^4}\\\\)</span>. In the paper by R. Lauterbach and G. Opfer (2014), the authors constructed an exact Jacobi matrix for functions defined in noncommutative algebraic systems without the use of any partial derivative. We applied this technique to find the eigenvalues of the companion matrix as zeros of the companion polynomial by Newton’s method.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.21136/AM.2023.0182-22.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2023.0182-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0182-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将研究数值方法在Clifford代数中的应用 \({\mathbb{R}^4}\),特别是在四元数的偏场中,在余四元数代数中,在其它非除法代数中 \({\mathbb{R}^4}\)。为了深入了解多维情况,我们首先考虑四元数和余四元数中的线性方程。然后我们将搜索单侧(简单)四元数多项式的零。可以区分三种不同类型的零。一般来说,四元数系数可以放在幂的两边。甚至有五种不同的零。所有结果均可推广到中的其它非交换代数 \({\mathbb{R}^4}\)。在R. Lauterbach和G. Opfer(2014)的论文中,作者为非交换代数系统中定义的函数构造了一个精确的Jacobi矩阵,而不使用任何偏导数。利用牛顿法求出伴矩阵的特征值作为伴多项式的零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A survey of some recent results on Clifford algebras in \({\mathbb{R}^4}\)

We will study applications of numerical methods in Clifford algebras in \({\mathbb{R}^4}\), in particular in the skew field of quaternions, in the algebra of coquaternions and in the other nondivision algebras in \({\mathbb{R}^4}\). In order to gain insight into the multidimensional case, we first consider linear equations in quaternions and coquaternions. Then we will search for zeros of one-sided (simple) quaternion polynomials. Three different classes of zeros can be distinguished. In general, the quaternionic coefficients can be placed on both sides of the powers. Then there are even five different classes of zeros. All results can be extended to other noncommutative algebras in \({\mathbb{R}^4}\). In the paper by R. Lauterbach and G. Opfer (2014), the authors constructed an exact Jacobi matrix for functions defined in noncommutative algebraic systems without the use of any partial derivative. We applied this technique to find the eigenvalues of the companion matrix as zeros of the companion polynomial by Newton’s method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信