Chen Lu, Wenjiong Chen, Xiaopeng Wang, Shutian Liu
{"title":"基于塞勒法的多非均匀腔吸声半解析预测方法","authors":"Chen Lu, Wenjiong Chen, Xiaopeng Wang, Shutian Liu","doi":"10.1007/s40857-022-00274-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a general half-analytical method to predict the sound absorption of multiple inhomogeneous resonators inspired by Sellers’ method with small calculation cost. In this method, the sound absorption coefficient of single units is calculated by the finite element method (FEM), and superposition is used to predict the sound absorption coefficient of the overall structure. Unlike existing fully analytical methods that have difficulties with complicated or novel constructions, we combine FEM and the analytical method called the half-analytical method (HAE), which predicts sound absorption performance with excellent results. Two example structures are tested and the absorption coefficients from the analytical method, FEM, present method, and experiment show excellent agreement. The novel HAE method is promising to accurately predict the sound absorption coefficient of multiple inhomogeneous structures.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Half-Analytical Method to Predict the Sound Absorption of Multiple Inhomogeneous Resonators Based on Sellers’ Method\",\"authors\":\"Chen Lu, Wenjiong Chen, Xiaopeng Wang, Shutian Liu\",\"doi\":\"10.1007/s40857-022-00274-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes a general half-analytical method to predict the sound absorption of multiple inhomogeneous resonators inspired by Sellers’ method with small calculation cost. In this method, the sound absorption coefficient of single units is calculated by the finite element method (FEM), and superposition is used to predict the sound absorption coefficient of the overall structure. Unlike existing fully analytical methods that have difficulties with complicated or novel constructions, we combine FEM and the analytical method called the half-analytical method (HAE), which predicts sound absorption performance with excellent results. Two example structures are tested and the absorption coefficients from the analytical method, FEM, present method, and experiment show excellent agreement. The novel HAE method is promising to accurately predict the sound absorption coefficient of multiple inhomogeneous structures.</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-022-00274-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-022-00274-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Half-Analytical Method to Predict the Sound Absorption of Multiple Inhomogeneous Resonators Based on Sellers’ Method
This study proposes a general half-analytical method to predict the sound absorption of multiple inhomogeneous resonators inspired by Sellers’ method with small calculation cost. In this method, the sound absorption coefficient of single units is calculated by the finite element method (FEM), and superposition is used to predict the sound absorption coefficient of the overall structure. Unlike existing fully analytical methods that have difficulties with complicated or novel constructions, we combine FEM and the analytical method called the half-analytical method (HAE), which predicts sound absorption performance with excellent results. Two example structures are tested and the absorption coefficients from the analytical method, FEM, present method, and experiment show excellent agreement. The novel HAE method is promising to accurately predict the sound absorption coefficient of multiple inhomogeneous structures.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.