{"title":"代数闭域上曲线群的对偶定理","authors":"Timo Keller","doi":"10.1007/s12188-018-0196-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we prove a duality theorem for the Tate–Shafarevich group of a finite discrete Galois module over the function field <i>K</i> of a curve over an algebraically closed field: there is a perfect duality of finite groups <img> for <i>F</i> a finite étale Galois module on <i>K</i> of order invertible in <i>K</i> and with <span>\\(F' = {{\\mathrm{Hom}}}(F,\\mathbf{Q}/\\mathbf {Z}(1))\\)</span>. Furthermore, we prove that <span>\\(\\mathrm {H}^1(K,G) = 0\\)</span> for <i>G</i> a simply connected, quasisplit semisimple group over <i>K</i> not of type <span>\\(E_8\\)</span>.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"88 2","pages":"289 - 295"},"PeriodicalIF":0.4000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-018-0196-7","citationCount":"0","resultStr":"{\"title\":\"A duality theorem for Tate–Shafarevich groups of curves over algebraically closed fields\",\"authors\":\"Timo Keller\",\"doi\":\"10.1007/s12188-018-0196-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note, we prove a duality theorem for the Tate–Shafarevich group of a finite discrete Galois module over the function field <i>K</i> of a curve over an algebraically closed field: there is a perfect duality of finite groups <img> for <i>F</i> a finite étale Galois module on <i>K</i> of order invertible in <i>K</i> and with <span>\\\\(F' = {{\\\\mathrm{Hom}}}(F,\\\\mathbf{Q}/\\\\mathbf {Z}(1))\\\\)</span>. Furthermore, we prove that <span>\\\\(\\\\mathrm {H}^1(K,G) = 0\\\\)</span> for <i>G</i> a simply connected, quasisplit semisimple group over <i>K</i> not of type <span>\\\\(E_8\\\\)</span>.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"88 2\",\"pages\":\"289 - 295\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-018-0196-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-018-0196-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-018-0196-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A duality theorem for Tate–Shafarevich groups of curves over algebraically closed fields
In this note, we prove a duality theorem for the Tate–Shafarevich group of a finite discrete Galois module over the function field K of a curve over an algebraically closed field: there is a perfect duality of finite groups for F a finite étale Galois module on K of order invertible in K and with \(F' = {{\mathrm{Hom}}}(F,\mathbf{Q}/\mathbf {Z}(1))\). Furthermore, we prove that \(\mathrm {H}^1(K,G) = 0\) for G a simply connected, quasisplit semisimple group over K not of type \(E_8\).
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.