{"title":"Clifford系统、Clifford结构及其正则微分形式","authors":"Kai Brynne M. Boydon, Paolo Piccinni","doi":"10.1007/s12188-020-00229-5","DOIUrl":null,"url":null,"abstract":"<div><p>A comparison among different constructions in <span>\\(\\mathbb {H}^2 \\cong {\\mathbb {R}}^8\\)</span> of the quaternionic 4-form <span>\\(\\Phi _{\\text {Sp}(2)\\text {Sp}(1)}\\)</span> and of the Cayley calibration <span>\\(\\Phi _{\\text {Spin}(7)}\\)</span> shows that one can start for them from the same collections of “Kähler 2-forms”, entering both in quaternion Kähler and in <span>\\(\\text {Spin}(7)\\)</span> geometry. This comparison relates with the notions of even Clifford structure and of Clifford system. Going to dimension 16, similar constructions allow to write explicit formulas in <span>\\(\\mathbb {R}^{16}\\)</span> for the canonical 4-forms <span>\\(\\Phi _{\\text {Spin}(8)}\\)</span> and <span>\\(\\Phi _{\\text {Spin}(7)\\text {U}(1)}\\)</span>, associated with Clifford systems related with the subgroups <span>\\(\\text {Spin}(8)\\)</span> and <span>\\(\\text {Spin}(7)\\text {U}(1)\\)</span> of <span>\\(\\text {SO}(16)\\)</span>. We characterize the calibrated 4-planes of the 4-forms <span>\\(\\Phi _{\\text {Spin}(8)}\\)</span> and <span>\\(\\Phi _{\\text {Spin}(7)\\text {U}(1)}\\)</span>, extending in two different ways the notion of Cayley 4-plane to dimension 16.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-020-00229-5","citationCount":"0","resultStr":"{\"title\":\"Clifford systems, Clifford structures, and their canonical differential forms\",\"authors\":\"Kai Brynne M. Boydon, Paolo Piccinni\",\"doi\":\"10.1007/s12188-020-00229-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A comparison among different constructions in <span>\\\\(\\\\mathbb {H}^2 \\\\cong {\\\\mathbb {R}}^8\\\\)</span> of the quaternionic 4-form <span>\\\\(\\\\Phi _{\\\\text {Sp}(2)\\\\text {Sp}(1)}\\\\)</span> and of the Cayley calibration <span>\\\\(\\\\Phi _{\\\\text {Spin}(7)}\\\\)</span> shows that one can start for them from the same collections of “Kähler 2-forms”, entering both in quaternion Kähler and in <span>\\\\(\\\\text {Spin}(7)\\\\)</span> geometry. This comparison relates with the notions of even Clifford structure and of Clifford system. Going to dimension 16, similar constructions allow to write explicit formulas in <span>\\\\(\\\\mathbb {R}^{16}\\\\)</span> for the canonical 4-forms <span>\\\\(\\\\Phi _{\\\\text {Spin}(8)}\\\\)</span> and <span>\\\\(\\\\Phi _{\\\\text {Spin}(7)\\\\text {U}(1)}\\\\)</span>, associated with Clifford systems related with the subgroups <span>\\\\(\\\\text {Spin}(8)\\\\)</span> and <span>\\\\(\\\\text {Spin}(7)\\\\text {U}(1)\\\\)</span> of <span>\\\\(\\\\text {SO}(16)\\\\)</span>. We characterize the calibrated 4-planes of the 4-forms <span>\\\\(\\\\Phi _{\\\\text {Spin}(8)}\\\\)</span> and <span>\\\\(\\\\Phi _{\\\\text {Spin}(7)\\\\text {U}(1)}\\\\)</span>, extending in two different ways the notion of Cayley 4-plane to dimension 16.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-020-00229-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-020-00229-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-020-00229-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Clifford systems, Clifford structures, and their canonical differential forms
A comparison among different constructions in \(\mathbb {H}^2 \cong {\mathbb {R}}^8\) of the quaternionic 4-form \(\Phi _{\text {Sp}(2)\text {Sp}(1)}\) and of the Cayley calibration \(\Phi _{\text {Spin}(7)}\) shows that one can start for them from the same collections of “Kähler 2-forms”, entering both in quaternion Kähler and in \(\text {Spin}(7)\) geometry. This comparison relates with the notions of even Clifford structure and of Clifford system. Going to dimension 16, similar constructions allow to write explicit formulas in \(\mathbb {R}^{16}\) for the canonical 4-forms \(\Phi _{\text {Spin}(8)}\) and \(\Phi _{\text {Spin}(7)\text {U}(1)}\), associated with Clifford systems related with the subgroups \(\text {Spin}(8)\) and \(\text {Spin}(7)\text {U}(1)\) of \(\text {SO}(16)\). We characterize the calibrated 4-planes of the 4-forms \(\Phi _{\text {Spin}(8)}\) and \(\Phi _{\text {Spin}(7)\text {U}(1)}\), extending in two different ways the notion of Cayley 4-plane to dimension 16.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.