{"title":"平面划分统计量期望的渐近分析","authors":"Ljuben Mutafchiev","doi":"10.1007/s12188-018-0191-z","DOIUrl":null,"url":null,"abstract":"<div><p>Assuming that a plane partition of the positive integer <i>n</i> is chosen uniformly at random from the set of all such partitions, we propose a general asymptotic scheme for the computation of expectations of various plane partition statistics as <i>n</i> becomes large. The generating functions that arise in this study are of the form <i>Q</i>(<i>x</i>)<i>F</i>(<i>x</i>), where <span>\\(Q(x)=\\prod _{j=1}^\\infty (1-x^j)^{-j}\\)</span> is the generating function for the number of plane partitions. We show how asymptotics of such expectations can be obtained directly from the asymptotic expansion of the function <i>F</i>(<i>x</i>) around <span>\\(x=1\\)</span>. The representation of a plane partition as a solid diagram of volume <i>n</i> allows interpretations of these statistics in terms of its dimensions and shape. As an application of our main result, we obtain the asymptotic behavior of the expected values of the largest part, the number of columns, the number of rows (that is, the three dimensions of the solid diagram) and the trace (the number of cubes in the wall on the main diagonal of the solid diagram). Our results are similar to those of Grabner et al. (Comb Probab Comput 23:1057–1086, 2014) related to linear integer partition statistics. We base our study on the Hayman’s method for admissible power series.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-018-0191-z","citationCount":"3","resultStr":"{\"title\":\"Asymptotic analysis of expectations of plane partition statistics\",\"authors\":\"Ljuben Mutafchiev\",\"doi\":\"10.1007/s12188-018-0191-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Assuming that a plane partition of the positive integer <i>n</i> is chosen uniformly at random from the set of all such partitions, we propose a general asymptotic scheme for the computation of expectations of various plane partition statistics as <i>n</i> becomes large. The generating functions that arise in this study are of the form <i>Q</i>(<i>x</i>)<i>F</i>(<i>x</i>), where <span>\\\\(Q(x)=\\\\prod _{j=1}^\\\\infty (1-x^j)^{-j}\\\\)</span> is the generating function for the number of plane partitions. We show how asymptotics of such expectations can be obtained directly from the asymptotic expansion of the function <i>F</i>(<i>x</i>) around <span>\\\\(x=1\\\\)</span>. The representation of a plane partition as a solid diagram of volume <i>n</i> allows interpretations of these statistics in terms of its dimensions and shape. As an application of our main result, we obtain the asymptotic behavior of the expected values of the largest part, the number of columns, the number of rows (that is, the three dimensions of the solid diagram) and the trace (the number of cubes in the wall on the main diagonal of the solid diagram). Our results are similar to those of Grabner et al. (Comb Probab Comput 23:1057–1086, 2014) related to linear integer partition statistics. We base our study on the Hayman’s method for admissible power series.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-018-0191-z\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-018-0191-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-018-0191-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic analysis of expectations of plane partition statistics
Assuming that a plane partition of the positive integer n is chosen uniformly at random from the set of all such partitions, we propose a general asymptotic scheme for the computation of expectations of various plane partition statistics as n becomes large. The generating functions that arise in this study are of the form Q(x)F(x), where \(Q(x)=\prod _{j=1}^\infty (1-x^j)^{-j}\) is the generating function for the number of plane partitions. We show how asymptotics of such expectations can be obtained directly from the asymptotic expansion of the function F(x) around \(x=1\). The representation of a plane partition as a solid diagram of volume n allows interpretations of these statistics in terms of its dimensions and shape. As an application of our main result, we obtain the asymptotic behavior of the expected values of the largest part, the number of columns, the number of rows (that is, the three dimensions of the solid diagram) and the trace (the number of cubes in the wall on the main diagonal of the solid diagram). Our results are similar to those of Grabner et al. (Comb Probab Comput 23:1057–1086, 2014) related to linear integer partition statistics. We base our study on the Hayman’s method for admissible power series.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.