平均曲率矢量为零的洛伦兹4流形中曲面的各向同性

IF 0.4 4区 数学 Q4 MATHEMATICS
Naoya Ando
{"title":"平均曲率矢量为零的洛伦兹4流形中曲面的各向同性","authors":"Naoya Ando","doi":"10.1007/s12188-021-00254-y","DOIUrl":null,"url":null,"abstract":"<div><p>We already have the concept of isotropicity of a minimal surface in a Riemannian 4-manifold and a space-like or time-like surface in a neutral 4-manifold with zero mean curvature vector. In this paper, based on the understanding of it, we define and study isotropicity of a space-like or time-like surface in a Lorentzian 4-manifold <i>N</i> with zero mean curvature vector. If the surface is space-like, then the isotropicity means either the surface has light-like or zero second fundamental form or it is an analogue of complex curves in Kähler surfaces. In addition, if <i>N</i> is a space form, then the isotropicity means that the surface has both the properties. If the surface is time-like and if <i>N</i> is a space form, then the isotropicity means that the surface is totally geodesic.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12188-021-00254-y.pdf","citationCount":"3","resultStr":"{\"title\":\"Isotropicity of surfaces in Lorentzian 4-manifolds with zero mean curvature vector\",\"authors\":\"Naoya Ando\",\"doi\":\"10.1007/s12188-021-00254-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We already have the concept of isotropicity of a minimal surface in a Riemannian 4-manifold and a space-like or time-like surface in a neutral 4-manifold with zero mean curvature vector. In this paper, based on the understanding of it, we define and study isotropicity of a space-like or time-like surface in a Lorentzian 4-manifold <i>N</i> with zero mean curvature vector. If the surface is space-like, then the isotropicity means either the surface has light-like or zero second fundamental form or it is an analogue of complex curves in Kähler surfaces. In addition, if <i>N</i> is a space form, then the isotropicity means that the surface has both the properties. If the surface is time-like and if <i>N</i> is a space form, then the isotropicity means that the surface is totally geodesic.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12188-021-00254-y.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-021-00254-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-021-00254-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们已经有了黎曼4流形中最小曲面和中性4流形中平均曲率为零的类空或类时曲面的各向同性的概念。本文在对其理解的基础上,定义并研究了平均曲率矢量为零的洛伦兹4流形N中类空曲面或类时曲面的各向同性。如果表面是类空间的,那么各向同性意味着表面具有类光或零秒基本形式,或者它是Kähler表面中复杂曲线的模拟。另外,如果N是一种空间形式,那么各向同性意味着表面具有这两种性质。如果表面是类时的,如果N是空间形式,那么各向同性意味着表面完全是测地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isotropicity of surfaces in Lorentzian 4-manifolds with zero mean curvature vector

We already have the concept of isotropicity of a minimal surface in a Riemannian 4-manifold and a space-like or time-like surface in a neutral 4-manifold with zero mean curvature vector. In this paper, based on the understanding of it, we define and study isotropicity of a space-like or time-like surface in a Lorentzian 4-manifold N with zero mean curvature vector. If the surface is space-like, then the isotropicity means either the surface has light-like or zero second fundamental form or it is an analogue of complex curves in Kähler surfaces. In addition, if N is a space form, then the isotropicity means that the surface has both the properties. If the surface is time-like and if N is a space form, then the isotropicity means that the surface is totally geodesic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信