{"title":"用紧凑布置的失谐谐振器实现宽带管道噪声的禁止传输","authors":"Jingwen Guo, Yi Fang, Xin Zhang","doi":"10.1007/s40857-021-00258-x","DOIUrl":null,"url":null,"abstract":"<div><p>Effective broadband duct sound propagation control is highly required in many practical engineering applications. In this study, a compact structure constituted by multiple detuned resonators is proposed for broadband duct noise transmission control. The coupling characteristics of two detuned resonators flush-mounted on the sidewall of a duct are firstly investigated. Results show that a coherent perfect absorption (CPA) is induced when these two resonators are precisely designed. Meanwhile, a nearly flat transmission forbidden band is formed, which is very beneficial for duct noise control. Furthermore, it is found that the appearance of the forbidden band is insensitive to the distance between resonators. On this basis, a customized broadband CPA-based structure constructed by detuned resonators is developed, in which the geometric parameters of each adjacent resonator satisfying the CPA condition and the resonators are closely placed. By overlapping the forbidden band of adjacent resonators, a broad duct sound transmission forbidden band is attained. The acoustic performance of the proposed compact design is demonstrated experimentally.\n</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":"50 1","pages":"79 - 90"},"PeriodicalIF":1.7000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40857-021-00258-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Forbidden Transmission of Broadband Duct Noise Realized by Compactly Placed Detuned Resonators\",\"authors\":\"Jingwen Guo, Yi Fang, Xin Zhang\",\"doi\":\"10.1007/s40857-021-00258-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Effective broadband duct sound propagation control is highly required in many practical engineering applications. In this study, a compact structure constituted by multiple detuned resonators is proposed for broadband duct noise transmission control. The coupling characteristics of two detuned resonators flush-mounted on the sidewall of a duct are firstly investigated. Results show that a coherent perfect absorption (CPA) is induced when these two resonators are precisely designed. Meanwhile, a nearly flat transmission forbidden band is formed, which is very beneficial for duct noise control. Furthermore, it is found that the appearance of the forbidden band is insensitive to the distance between resonators. On this basis, a customized broadband CPA-based structure constructed by detuned resonators is developed, in which the geometric parameters of each adjacent resonator satisfying the CPA condition and the resonators are closely placed. By overlapping the forbidden band of adjacent resonators, a broad duct sound transmission forbidden band is attained. The acoustic performance of the proposed compact design is demonstrated experimentally.\\n</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":\"50 1\",\"pages\":\"79 - 90\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40857-021-00258-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-021-00258-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-021-00258-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forbidden Transmission of Broadband Duct Noise Realized by Compactly Placed Detuned Resonators
Effective broadband duct sound propagation control is highly required in many practical engineering applications. In this study, a compact structure constituted by multiple detuned resonators is proposed for broadband duct noise transmission control. The coupling characteristics of two detuned resonators flush-mounted on the sidewall of a duct are firstly investigated. Results show that a coherent perfect absorption (CPA) is induced when these two resonators are precisely designed. Meanwhile, a nearly flat transmission forbidden band is formed, which is very beneficial for duct noise control. Furthermore, it is found that the appearance of the forbidden band is insensitive to the distance between resonators. On this basis, a customized broadband CPA-based structure constructed by detuned resonators is developed, in which the geometric parameters of each adjacent resonator satisfying the CPA condition and the resonators are closely placed. By overlapping the forbidden band of adjacent resonators, a broad duct sound transmission forbidden band is attained. The acoustic performance of the proposed compact design is demonstrated experimentally.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.