{"title":"基于超声拓扑电荷调制的微粒自适应运动与聚类控制","authors":"H. S. Lee, H. X. Cao, D. Jung, C. S. Kim","doi":"10.1007/s10483-023-2973-9","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel motion control technique for microrobot clusters to exploit the characteristics of the ultrasonic field. The method comprises two steps, i.e., introducing an ultrasonic actuation (UA) linear model for three-dimensional (3D) locomotion and controlling the topological charge (TC) in the ultrasonic vortex for microrobot clustering. Here, the TC is a controllable parameter for the expansion and contraction of the pressure null space inside the vortex. We present a TC control method to cluster sporadically distributed microrobots in a specific workspace. To validate the concept, a UA system composed of 30 ultrasonic transducers with 1 MHz frequency is fabricated, and the characteristics of the generated acoustic pressure field are analyzed through simulations. Subsequently, the performances of the adaptive controller for precise 3D locomotion and the TC control method for clustering are evaluated. Finally, the UA technology, which performs both clustering and locomotion in a complex manner, is validated with a gelatin phantom in an in-vitro environment.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 4","pages":"623 - 640"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model-based adaptive locomotion and clustering control of microparticles through ultrasonic topological charge modulation\",\"authors\":\"H. S. Lee, H. X. Cao, D. Jung, C. S. Kim\",\"doi\":\"10.1007/s10483-023-2973-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a novel motion control technique for microrobot clusters to exploit the characteristics of the ultrasonic field. The method comprises two steps, i.e., introducing an ultrasonic actuation (UA) linear model for three-dimensional (3D) locomotion and controlling the topological charge (TC) in the ultrasonic vortex for microrobot clustering. Here, the TC is a controllable parameter for the expansion and contraction of the pressure null space inside the vortex. We present a TC control method to cluster sporadically distributed microrobots in a specific workspace. To validate the concept, a UA system composed of 30 ultrasonic transducers with 1 MHz frequency is fabricated, and the characteristics of the generated acoustic pressure field are analyzed through simulations. Subsequently, the performances of the adaptive controller for precise 3D locomotion and the TC control method for clustering are evaluated. Finally, the UA technology, which performs both clustering and locomotion in a complex manner, is validated with a gelatin phantom in an in-vitro environment.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 4\",\"pages\":\"623 - 640\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-2973-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-2973-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Model-based adaptive locomotion and clustering control of microparticles through ultrasonic topological charge modulation
We present a novel motion control technique for microrobot clusters to exploit the characteristics of the ultrasonic field. The method comprises two steps, i.e., introducing an ultrasonic actuation (UA) linear model for three-dimensional (3D) locomotion and controlling the topological charge (TC) in the ultrasonic vortex for microrobot clustering. Here, the TC is a controllable parameter for the expansion and contraction of the pressure null space inside the vortex. We present a TC control method to cluster sporadically distributed microrobots in a specific workspace. To validate the concept, a UA system composed of 30 ultrasonic transducers with 1 MHz frequency is fabricated, and the characteristics of the generated acoustic pressure field are analyzed through simulations. Subsequently, the performances of the adaptive controller for precise 3D locomotion and the TC control method for clustering are evaluated. Finally, the UA technology, which performs both clustering and locomotion in a complex manner, is validated with a gelatin phantom in an in-vitro environment.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.