无粘轴对称MHD-Boussinesq系统的大数据全局适定性

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Zijin Li, Zhaojun Xing, Meixian Yang
{"title":"无粘轴对称MHD-Boussinesq系统的大数据全局适定性","authors":"Zijin Li,&nbsp;Zhaojun Xing,&nbsp;Meixian Yang","doi":"10.1007/s10440-023-00608-z","DOIUrl":null,"url":null,"abstract":"<div><p>The global well-posedness of the 3D inviscid MHD-Boussinesq system, with large axisymmetric initial data, in the Sobolev space <span>\\(H^{m}\\)</span> is given. To overcome difficulties that arise in the time-uniform <span>\\(H^{1}\\)</span> estimate, a reformulated system of good unknowns is discovered and an intermediate estimate is shown. Based on the reformulated system, a Beale-Kato-Majda-type criterion of the inviscid MHD-Boussinesq system is verified. Then higher-order estimates are concluded by the classical energy method and estimates of commutators. At last, we show the <span>\\(H^{m}\\)</span> norm of the global-in-time solution temporally grows no faster than a four times exponential function <span>\\((\\forall m\\in \\mathbb{N})\\)</span>.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"187 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Large Data Global Well-Posedness of Inviscid Axially Symmetric MHD-Boussinesq System\",\"authors\":\"Zijin Li,&nbsp;Zhaojun Xing,&nbsp;Meixian Yang\",\"doi\":\"10.1007/s10440-023-00608-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The global well-posedness of the 3D inviscid MHD-Boussinesq system, with large axisymmetric initial data, in the Sobolev space <span>\\\\(H^{m}\\\\)</span> is given. To overcome difficulties that arise in the time-uniform <span>\\\\(H^{1}\\\\)</span> estimate, a reformulated system of good unknowns is discovered and an intermediate estimate is shown. Based on the reformulated system, a Beale-Kato-Majda-type criterion of the inviscid MHD-Boussinesq system is verified. Then higher-order estimates are concluded by the classical energy method and estimates of commutators. At last, we show the <span>\\\\(H^{m}\\\\)</span> norm of the global-in-time solution temporally grows no faster than a four times exponential function <span>\\\\((\\\\forall m\\\\in \\\\mathbb{N})\\\\)</span>.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-023-00608-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00608-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给出了Sobolev空间\(H^{m}\)中具有大轴对称初始数据的三维无粘MHD-Boussinesq系统的全局适定性。为了克服在时间均匀\(H^{1}\)估计中出现的困难,发现了一个重新表述的良好未知数系统,并给出了一个中间估计。在此基础上,验证了无粘MHD-Boussinesq系统的beale - kato - majda型判据。然后利用经典能量法和换向子的估计得到了高阶估计。最后,我们证明了全局实时解的\(H^{m}\)范数在时间上的增长速度并不快于四倍指数函数\((\forall m\in \mathbb{N})\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Large Data Global Well-Posedness of Inviscid Axially Symmetric MHD-Boussinesq System

The global well-posedness of the 3D inviscid MHD-Boussinesq system, with large axisymmetric initial data, in the Sobolev space \(H^{m}\) is given. To overcome difficulties that arise in the time-uniform \(H^{1}\) estimate, a reformulated system of good unknowns is discovered and an intermediate estimate is shown. Based on the reformulated system, a Beale-Kato-Majda-type criterion of the inviscid MHD-Boussinesq system is verified. Then higher-order estimates are concluded by the classical energy method and estimates of commutators. At last, we show the \(H^{m}\) norm of the global-in-time solution temporally grows no faster than a four times exponential function \((\forall m\in \mathbb{N})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信