与相关平稳数据的密度反褶积

Pub Date : 2023-09-03 DOI:10.21136/AM.2023.0135-22
Le Thi Hong Thuy, Cao Xuan Phuong
{"title":"与相关平稳数据的密度反褶积","authors":"Le Thi Hong Thuy,&nbsp;Cao Xuan Phuong","doi":"10.21136/AM.2023.0135-22","DOIUrl":null,"url":null,"abstract":"<div><p>We study the density deconvolution problem when the random variables of interest are an associated strictly stationary sequence and the random noises are i.i.d. with a nonstandard density. Based on a nonparametric strategy, we introduce an estimator depending on two parameters. This estimator is shown to be consistent with respect to the mean integrated squared error. Under additional regularity assumptions on the target function as well as on the density of noises, some error estimates are derived. Several numerical simulations are also conducted to illustrate the efficiency of our method.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density deconvolution with associated stationary data\",\"authors\":\"Le Thi Hong Thuy,&nbsp;Cao Xuan Phuong\",\"doi\":\"10.21136/AM.2023.0135-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the density deconvolution problem when the random variables of interest are an associated strictly stationary sequence and the random noises are i.i.d. with a nonstandard density. Based on a nonparametric strategy, we introduce an estimator depending on two parameters. This estimator is shown to be consistent with respect to the mean integrated squared error. Under additional regularity assumptions on the target function as well as on the density of noises, some error estimates are derived. Several numerical simulations are also conducted to illustrate the efficiency of our method.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2023.0135-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0135-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了当随机变量为关联严格平稳序列且随机噪声为非标准密度时的密度反褶积问题。基于非参数策略,我们引入了一个依赖于两个参数的估计量。这个估计量与平均积分平方误差是一致的。在对目标函数和噪声密度附加的规则性假设下,得到了一些误差估计。数值模拟结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Density deconvolution with associated stationary data

We study the density deconvolution problem when the random variables of interest are an associated strictly stationary sequence and the random noises are i.i.d. with a nonstandard density. Based on a nonparametric strategy, we introduce an estimator depending on two parameters. This estimator is shown to be consistent with respect to the mean integrated squared error. Under additional regularity assumptions on the target function as well as on the density of noises, some error estimates are derived. Several numerical simulations are also conducted to illustrate the efficiency of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信