{"title":"关于面积公式的简单说明","authors":"Lucio Cadeddu, Maria Antonietta Farina","doi":"10.1007/s12188-017-0183-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we consider a special case of the famous Coarea Formula whose initial proof (for functions from any Riemannian manifold of dimension 2 into <span>\\({\\mathbb {R}}\\)</span>) is due to Kronrod (Uspechi Matem Nauk 5(1):24–134, 1950) and whose general proof (for Lipschitz maps between two Riemannian manifolds of dimensions <i>n</i> and <i>p</i>) is due to Federer (Am Math Soc 93:418–491, 1959). See also Maly et al. (Trans Am Math Soc 355(2):477–492, 2002), Fleming and Rishel (Arch Math 11(1):218–222, 1960) and references therein for further generalizations to Sobolev mappings and <i>BV</i> functions respectively. We propose two counterexamples which prove that the coarea formula that we can find in many references (for example Bérard (Spectral geometry: direct and inverse problems, Springer, 1987), Berger et al. (Le Spectre d’une Variété Riemannienne, Springer, 1971) and Gallot (Astérisque 163(164):31–91, 1988), is not valid when applied to <span>\\(C^\\infty \\)</span> functions. The gap appears only for the non generic set of non Morse functions.</p></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2017-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12188-017-0183-4","citationCount":"0","resultStr":"{\"title\":\"A brief note on the coarea formula\",\"authors\":\"Lucio Cadeddu, Maria Antonietta Farina\",\"doi\":\"10.1007/s12188-017-0183-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note we consider a special case of the famous Coarea Formula whose initial proof (for functions from any Riemannian manifold of dimension 2 into <span>\\\\({\\\\mathbb {R}}\\\\)</span>) is due to Kronrod (Uspechi Matem Nauk 5(1):24–134, 1950) and whose general proof (for Lipschitz maps between two Riemannian manifolds of dimensions <i>n</i> and <i>p</i>) is due to Federer (Am Math Soc 93:418–491, 1959). See also Maly et al. (Trans Am Math Soc 355(2):477–492, 2002), Fleming and Rishel (Arch Math 11(1):218–222, 1960) and references therein for further generalizations to Sobolev mappings and <i>BV</i> functions respectively. We propose two counterexamples which prove that the coarea formula that we can find in many references (for example Bérard (Spectral geometry: direct and inverse problems, Springer, 1987), Berger et al. (Le Spectre d’une Variété Riemannienne, Springer, 1971) and Gallot (Astérisque 163(164):31–91, 1988), is not valid when applied to <span>\\\\(C^\\\\infty \\\\)</span> functions. The gap appears only for the non generic set of non Morse functions.</p></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12188-017-0183-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-017-0183-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-017-0183-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑著名的Coarea公式的一个特殊情况,它的初始证明(对于从任何2维黎曼流形到\({\mathbb {R}}\)的函数)是由Kronrod (Uspechi Matem Nauk 5(1): 24-134, 1950),它的一般证明(对于两个n维和p维黎曼流形之间的Lipschitz映射)是由费德勒(Am Math Soc 93:418-491, 1959)。另见Maly等人(Trans Am Math Soc 355(2): 477-492, 2002), Fleming和Rishel (Arch Math 11(1): 218-222, 1960)以及其中关于Sobolev映射和BV函数的进一步推广的参考文献。我们提出了两个反例,证明了我们可以在许多参考文献中找到的共面积公式(例如b, 1987), Berger等人(Le Spectre d 'une variacriemannienne,施普林格,1971)和Gallot (ast, 163): 31-91, 1988)在应用于\(C^\infty \)函数时无效。这种差距只出现在非摩尔斯函数的非泛型集上。
In this note we consider a special case of the famous Coarea Formula whose initial proof (for functions from any Riemannian manifold of dimension 2 into \({\mathbb {R}}\)) is due to Kronrod (Uspechi Matem Nauk 5(1):24–134, 1950) and whose general proof (for Lipschitz maps between two Riemannian manifolds of dimensions n and p) is due to Federer (Am Math Soc 93:418–491, 1959). See also Maly et al. (Trans Am Math Soc 355(2):477–492, 2002), Fleming and Rishel (Arch Math 11(1):218–222, 1960) and references therein for further generalizations to Sobolev mappings and BV functions respectively. We propose two counterexamples which prove that the coarea formula that we can find in many references (for example Bérard (Spectral geometry: direct and inverse problems, Springer, 1987), Berger et al. (Le Spectre d’une Variété Riemannienne, Springer, 1971) and Gallot (Astérisque 163(164):31–91, 1988), is not valid when applied to \(C^\infty \) functions. The gap appears only for the non generic set of non Morse functions.
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.